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Section IV.7. Algebras

Note. In this section, we define a K-algebra over a commutative ring K, and

we define a division algebra. We give examples of such structures, define a subal-

gebra, algebra ideal, and K-algebra homomorphisms. These results require little

background (beyond a knowledge of rings and an introduction to modules). We

present two theorems, but they require a knowledge of tensor products, as given in

Section IV.5. We’ll see algebras again in Section IX.5 where we introduce algebra

modules and algebraic algebras. In Section IX.6, we introduce division algebras

and prove in Frobenius’ Theorem (one of the last results in the book concerning

algebra, as opposed to Chapter XI which covers category theory) that the only

algebraic division algebras over the field R are R, C, and H (the real quaternions).

Definition IV.7.1. Let K be a commutative ring with identity. A K-algebra (or

algebra over K) A is a ring A such that:

(i) (A, +) is a unitary (left) K-module;

(ii) k(ab) = (ka)b = a(kb) for all k ∈ K and a, b ∈ A.

A K-algebra A which, as a ring, is a division ring, is called a division algebra.

Note. Since (A, +) is a (left) K-module, then the action of commutative ring K on

ring A is defined (see Definition IV.1.1) and satisfies distribution and associativty.

Notice that a K-algebra A is a ring but A may not be commutative even though

ring K is.
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Note IV.7.A. Since K is commutative, every left K-module A is also a right K

module with the definition ka = ak for all a ∈ A and k ∈ K (commutivity is

needed to satisfy property (iii) of the definition of module, Definition IV.1.1). So

every left K-algebra is also a right K-algebra (again, with the definition ka = ak).

Note. Hungerford states (page 227) that: “The classical theory of algebras deals

with algebras over a field K.” Such an algebra is actually a vector space (notice

that the algebra has the added structure of vector multiplication since the “vectors”

are from ring A). If an algebra over a field is finite dimensional as a vector space

over K then it is a finite dimensional algebra over K.

Example IV.7.A. Every ring R is an additive abelian group and hence is a Z-

module. For n ∈ Z and a, b ∈ R we have

n(ab) = ab + ab + · · ·+ ab︸ ︷︷ ︸
n times

=


(a + a + · · ·+ a)︸ ︷︷ ︸

n times

b = (na)b

a (b + b + · · ·+ b)︸ ︷︷ ︸
n times

= a(nb)

(with the obvious meaning in terms of additive inverses when n < 0), so (ii) of

Definition IV.7.1 holds and hence every ring R is a Z-module and a Z-algebra.

Examples. If K is a commutative rings with identity, then the polynomial ring

K[x1, x2, . . . , xn] and the power series ring K[[x]] are K-algebras where the K-

module action is defined in the usual way of multiplication of polynomials/series

by “constants.”
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Example. Let A be a ring with identity and K a subring of the center of A such

that aA ∈ K (so that (A, +) is a unitary K-module). Then A is a K-algebra, with

the K-module action given by multiplication in A. In particular, every commutative

ring K with identity is a K-algebra.

Example. The complex numbers C are a R-algebra; it is a finite dimensional

algebra over R of dimension 2. The quaternions H are a (noncommutative) R-

algebra and a finite dimensional algebra over R of dimension 4.

Example. Let G be a multiplicative group and K a commutative ring with iden-

tity. We defined the group ring K(G) in Example III.1.A. The elements of K(G)

are |G|-tuples of elements of K where all but finitely many entries are 0, so the

elements of K(G) form the set denoted
∑

g∈G R. For x = {kg}g∈G ∈ K(G) we

denote x as the formal sum

x = kg1
g1 + kg2

g2 + · · ·+ kgn
gn =

n∑
i=1

rgi
gi

where the nonzero kg in x are kg1
, kg2

, . . . , kgn
. The group ring K(G)is actually a

K-algebra where the K-module action is given by k (
∑

rigg) =
∑

(kri)gi where

k, ri ∈ K and g ∈ G. K(G) is the group algebra of G over K.

Example. If K is a commutative ring with identity then the ring Matn(K) of all

n×n matrices over K is a K algebra with the K-module action given as the usual

scalar multiplication of a matrix so that for k ∈ K and A, B ∈ Matn(K) we have

k(AB) = (kA)B = A(kB). In fact, if A is a K-algebra, then so is Matn(A).
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Note. The next theorem gives an equivalent condition for a unitary left K-module

to be a K-algebra. So it yields an alternative definition of a K-algebra and it

does so in terms of tensor products. The motivation for the next theorem is the

fact that for any ring R, there is a unique map (by Theorem IV.5.2) mapping

R ⊗Z R → R (defined on a generator r ⊗ s by r ⊗ s 7→ rs) is a homomorphism

of additive abelian groups. Since rings are Z-algebras (by Example IV.7.A), this

observation is a special case of the next theorem.

Theorem IV.7.2. Let K be a commutative ring with identity and A a unitary

let K-module. Then A is a K-algebra (note that is A is a left K-algebra then A

is also a right K-algebra by Note IV.7.A) if and only if there exists a K-module

homomorphism π : A⊗K A→ A such that the following diagram is commutative:

A⊗K A
π−→ A

A⊗K A⊗K A
π⊗1A−→A⊗K A

↓
1A ⊗ π

↓
π

In this case, the K-algebra A has an identity if and only if there is a K-module

homomorphism I : K → A such that the following diagram is commutative:

A⊗K A
π−→A

π←− A⊗K A

K ⊗K A
ζ−→A

θ←− A⊗K K

↓
I ⊗ 1A

↓
1A

↓
1A ⊗ I

where ζ and θ are the isomorphisms of Theorem IV.5.7.
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Definition. The homomorphism π : A⊗K A→ A of Theorem IV.7.2 is the product

map of the K-algebra A. The homomorphism I, where I⊗1A : K⊗K A→ A⊗K A

and 1A ⊗ I : A⊗K K → A⊗K A, is the unit map.

Note. We now define subalgebra, ideal, homomorphism, and isomorphism for

K-algebras. We make use of the corresponding definitions of modules.

Definition IV.7.3. Let K be a commutative ring with idenity and A and B be

K-algebras.

(i) A subalgebra of A is a subring of A that is also a K-submodule of A.

(ii) A (left, right, two-sided) algebra ideal of A is a (left, right, two-sided, respec-

tively) ideal of the ring A that is also a K-submodule of A.

(iii) A homomorphism (respectively, isomorphism) of K-algebras f : A → B is

a ring homomorphism (respectively, isomorphism) that is also a K-module

homomorphism (respective, isomorphism).

Note. if A is a K-algebra where A does not have an identity, then an ideal of ring

A may not be an algebra ideal of ring A, as is to be shown by example in Exercise

IV.7.4. However, if A has an identity then we have the following.

Theorem IV.7.A. If A is a K-algebra and ring A has an identity, then a (left,

right, two-sided) ideal of ring A is also a (left, right, two-sided, respectively) algebra

ideal of K-algebra A.
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Note. Just as we have defined quotient groups using normal subgroups, and quo-

tient rings using ideals, we can define quotient algebras of a K-algebra using algebra

ideals (in the obvious way, using cosets).

Note. We can define direct products and direct sums of families of K-algebras to

produce new K-algebras (as we did for rings in Section III.2, “Ideals”). We can

also use tensor products to construct new algebras, as will be shown in the next

theorem.

Note. It is to be shown in Exercise IV.7.2 that if A and B are K-modules then

there is a K-module isomorphism α : A⊗K B → B⊗K A such that α(a⊗ b) = b⊗a

for all a ∈ A and b ∈ B. This useful in the proof of the following (which we leave

as Exercise IV.7.A).

Theorem IV.7.4. Let A and B be algebras (with identity) over a commutative

ring K with identity. Let π be the composition

(A⊗K B)⊗K (A⊗K B)
1A⊗α⊗aB−→ (A⊗K A)⊗K (B ⊗K B)

πA⊗πB−→ A⊗K B,

where πA and πB are the product maps of A and B, respectively. Then A⊗K B is

a K-algebra (with identity) with product map π.
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Note. We now define the tensor products of K-algebras. This plays a large role

in the study of division rings in Section IX.6 (the last section of the book covering

topics from modern algebra).

Definition. Let K be a commutative ring with idenity and let A and B be

K-algebras. The K-algebra A ⊗K B of Theorem IV.7.4 is the tensor product of

K-algebras A and B.

Revised: 10/30/2022


