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Chapter IX. The Structure of Rings

Section IX.1. Simple and Primitive Rings

Note. This section of the text starts with a “big picture” conversation. We’ll try

to address this after introducing some of the new ideas. The background neces-

sary for this section includes Sections IV.1, “Modules, Homomorphisms, and Exact

Sequences,” Section IV.2, “Free Modules and Vector Spaces,” and Section VIII.1,

“Chain Conditions.”

Note. Exercise IV.1.7 introduces an endomorphism ring: “If A and B are R-

modules, then the set HomR(A,B) of all R-module homomorphisms mapping A →

B is an abelian group with f + g given on a ∈ A by (f + g)(a) = f(a) + g(a) ∈ B.

The identity element is the zero map. HomR(A,A) is a ring with identity, where

multiplication is composition of functions. HomR(A,A) is the endomorphism ring

of A.” In this section we consider endomorphism rings where the R-module A is a

vector space.

Definition IX.1.1. A (left) module A over a ring R is simple (or irreducible)

provided RA 6= {0} and A has no proper submodules. A ring R is simple if

R2 6= {0} and R has no proper (two-sided) ideals.



IX.1. Simple and Primitive Rings 2

Note. Trivially, every simple module is nonzero (i.e., not just {0}) and similarly

every simple ring is nonzero. A unitary module A over a ring R with identity has

RA 6= {0} (unless A = {0}; recall 1Ra = a for all a ∈ A by Definition IV.1.1(iv),

“unitary R-module,” and so A is simple if and only if A has no proper submodules

(notice this statement holds for A = {0} also).

Example. If R is a ring with identity and A is an R-module, then by Exercise

IV.1.17(a), there are submodules B and C of A such that B is unitary, RC = {0},

and A = B ⊕ C. So if A is simple then it must be tat C = {0} and A = B. That

is, every simple module over a ring with identity is unitary.

Lemma IX.1.A. Every simple module A is cyclic. In fact, A = Ra for every

nonzero a ∈ A.

Note. The converse of Lemma IX.1.A does no hold since Z module Z6 is cyclic (it

is generated by 1), but is has proper submodules {0, 2, 4} and {0, 3}.

Example. A division ring D (where D 6= {0}) has all nonzero elements as units

and so every nonzero ideal must contain 1D (since ideals are subrings). But then

the ideal must equal D (since d ∈ D and 1D ∈ I implies dtD = d ∈ I). so D has

no proper ideal and division ring D must be simple. Similarly, D as a D-module

is simple.
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Example. Let D be a division ring and let R = Matn(D) be the ring of all n × n

matrices with zero columns except possible column k). It was shown in the proof of

Corollary VIII.1.2 that Ik (denoted as Rek in the proof) is a left ideal of R which is

nonzero and has no proper submodules. That is, each Ik is a simple left R-module.

Example. Let D be a division ring and let R = Matn(D) where n > 1. By the

previous example, Ik is a proper left ideal of R and so Matn(D) is not a simple

left module over itself. But as a ring, Matn(D) (here we take n ≥ 1) has no proper

ideals and so as a ring Matn(D) is simple. So the simplicity of a ring R may differ

from the simplicity of ring R treated as an R-module.

Definition. A left ideal of a ring R is a minimal left ideal if I 6= {0} and for every

left ideal J of R such that {0} ⊂ J ⊂ I , either J = {0} or J = I .

Note. By the definition of “simple ring” (Definition IX.1.1), a left ideal I of ring

R such that RI 6= {0} is a simple left R-module if and only if I is a minimal left

ideal.

Lemma IX.1.B. Let A = Ra be a cyclic R-module. Define θ : R → A as

θ(r) = ra. Then R/Ker(θ) (and hence A) has no proper submodules if and only if

Ker(θ) is a maximal left ideal of R.
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Note IX.1.A. Let A be a simple R-module. By Lemma IX.1.A, A is cyclic and

A = Ra for any nonzero a ∈ A. By Lemma IX.1.B (see the proof), since A is

simple, A ∼= R/I where I is some maximal left ideal (in fact, I is the kernel of

some homomorphism). So every simple R-module is isomorphic to R/I for some

maximal left ideal I . We now introduce a condition that will allow us to show that

the converse of this holds for a certain class of maximal left ideals.

Definition IX.1.2. A left ideal I in a ring R is regular (or modular) if there exists

e ∈ R such that r − re ∈ I for every r ∈ R. Similarly, a right ideal J is regular if

there exists e ∈ R such that r − er ∈ J for every r ∈ R.

Note. If R is a ring with identity 1R, then every ideal is regular since we can take

e = 1R and then r − re = r − er = 0, and 0 is in every ideal. Now we relate simple

R-modules to quotients R/I where I is a maximal regular ideal.

Theorem IX.1.3. A left module A over ring R is simple if and only if A is

isomorphic to R/I for some regular maximal left ideal I . This holds also if we

replace “left” with “right.”

Note. We need one more result before defining a primitive ring. In the Wedderburn-

Artin Theorem (Theorem IX.1.14) we’ll see these ideas united.
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Theorem IX.1.4. Let B be a subset of a left module A over a ring R. Then

A(B) = {r ∈ R | rb = 0 for all b ∈ B} is a left ideal of R. If B is a submodule of

A, then A(B) is an (two sided) ideal.

Definition. Let B be a subset of a left module A over a ring R. Left ideal

A(B) = {r ∈ R | rb = 0 for all b ∈ B} is the left annihilator of B. The right

annihilator of a right module is similarly defined.

Definition IX.1.5. A left module A is faithful if its left annihilator A(A) is {0}.

A ring R is left primitive if there exists a simple faithful left R-module. A right

primitive ring is similarly defined.

Note. There exist right primitive rings that are not left primitive; see G. Bergman,

“A Ring Primitive on the Right but Not on the Left,” Proceedings of the American

Mathematical Society 15, 473–475 (1964); a correction is given on page 1000.

Note. From now on we use the term “primitive” to mean “left primitive.” All

results proved for left primitive rings are true also for right primitive rings.

Example. [This example requires two results from Section IV.2, “Free Modules

and Vector Spaces”; namely, Theorems IV.2.1 and IV.2.4.] Let V be a (possibly

infinite dimensional vector space over a division ring D (see Definition IV.1.1)

and let R be the endomorphism ring HomD(V, V ) of V (see Exercise IV.1.7). By

Exercise IV.1.7(c), V is a left R-module (or “HomD(V, V )-module”) with θv = θ(v)
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for all v ∈ V and θ ∈ R. If u is a nonzero vector in V , then there is a basis of V that

contains u by Theorem IV.2.4. For each v ∈ V we define θv ∈ R = HomD(V, V ) by

defining θv(u) = v and θv(w) = 0 for all basis elements x except v; this determines

θv on all of V and θv is in fact a homomorphism (by Theorem IV.2.4, V is a free D-

module; by Theorem IV.2.1(iv), θv is a homomorphism [see the proof of (i) implies

(iv)]). Now

Ru = HomD(V, V ) u = {θ(u) | θ ∈ HomD(V, V )} ⊃ {θv(u) | v ∈ V } = V,

or Ru = V and this holds for any given nonzero u ∈ V . Whence V has no proper

R-submodules (since Ru = V for all nonzero u ∈ V , the only possible submod-

ule is R0 = {0}). Since R = HomD(V, V ) has an identity (namely, the identity

homomorphism), RV 6= {0}. So V is a simple (left) R-module (by Definition

IX.1.1). If θ is in the annihilator of V , θ ∈ A(V ); that is, θV = {0} for some

θ ∈ R = HomD(V, V ) then “clearly” θ = 0. So V is a faithful (left) R-module

(by Definition IX.1.5). Therefore R = HomD(V, V ) is primitive (also by Definition

IX.1.5). We now argue that the simplicity of R = HomD(V, V ) is determined by

the dimension of V (finite versus infinite dimensional).

If V is of finite dimension n, then R = HomD(V, V ) is isomorphic to a ring

of all n × n matrices with entries from D by Theorem VII.1.4 (notice that any

vector space V with a basis is a free D-module by the definition of free D-module;

see Theorem IV.2.1) and by Exercise III.2.9(a), R has no proper ideals (and so

no proper D-submodules). Now R = HomD(V, V ) contains the identity matrix, so

RV 6= {0}. So by Definition IX.1.1, ring R = HomD(V, V ) is simple. If V is infinite

dimensional, then it is to be shown that ring R = HomD(V, V ) is not simple.
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Note. In the previous example, the simplicity of ring R = HomD(V, V ) being

related to the dimension of vector space V over division ring D (finite versus infinite

dimensional) fore shadows the main result of this section, the Wedderburn-Artin

Theorem (Theorem IX.1.14).

Note. In the previous example we saw that the ring R = HomD(V, V ), where V is

a vector space, is primitive. We now give two results that let us find other examples

of primitive rings.

Proposition IX.1.6. A simple ring R with identity is primitive.

Proposition IX.1.7. A commutative ring R is primitive if and only if R is a field.

Note. The classification of noncommutative primitive rings is more complicated.

We accomplish this in the Jacobson Density Theorem (Theorem IX.1.12). We start

with a definition.

Definition IX.1.8. Let V be a (left) vector space over a division ring D. A

subring R of the endomorphism ring HomD(V, V ) (see Exercise IV.1.7) is a dense

ring of endomorphisms of V (or a dense subring of HomD(V, V )) if for every n ∈ N,

every linearly independent subset {u1, u2, . . . , un} of V and every arbitrary subset

{v1, v2, . . . , vn} of V , there exists θ ∈ R such that θ(ui) = vi for i = 1, 2, . . . , n.
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Lemma IX.1.C/Example. For V a vector space over a division ring D, the

endomorphism ring HomD(V, V ) is a dense subring of itself.

Note. If V is finite dimensional then, in fact, the only dense subring of HomD(V, V )

is itself, as the next theorem shows.

Theorem IX.1.9. Let R be a dense ring of endomorphisms of a vector space V

over a division ring D. Then R is left (respectively, right) Artinian if and only if

dimD(V ) is finite, in which case R = HomD(V, V ).

Note. We prove that an arbitrary primitive ring is isomorphic to a dense ring

of endomorphisms of a suitable vector space in the Jacobson Density Theorem

(Theorem IX.1.12). We first need two lemmas.

Lemma IX.1.10. (Schur) Let A be a simple module over a ring R and let B be

any R-module.

(i) Every nonzero R-module homomorphism f : A → B is a monomorphism (one

to one);

(ii) every nonzero R-module homomorphism f : B → A is an epimorphism (onto);

(iii) the endomorphism ring D = HomR(A,A) is a division ring.
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Note IX.1.B. Let A be a simple R-module. By Exercise IV.1.7(c), A is a left

HomR(A,A)-module with fa defined as fa = f(a) for a ∈ A and f ∈ HomR(A,A).

Since A is simple then by Lemma IX.1.10(iii), HomR(A,A) is a division ring. So,

by Definition IV.1.1, “vector space,” A is a vector space over HomR(A,A).

Lemma IX.1.11. Let A be a simple module over a ring R. Consider A as a

vector space over the division ring D = HomR(A,A). If V is a finite dimensional

D-subspace of the D-vector space A and a ∈ A \ V , then there exists r ∈ R such

that ra 6= 0 and rV = 0.

Note. We now have the equipment to classify primitive rings in terms of dense

rings of endomorphisms of a vector space (notice that the vector space depends on a

faithful simple R-module A which exists according the the definition of “primitive”).

y Note IX.1.B (and Lemma IX.1.10(iii))m D = HomR(A,A) is a division ring and A

is a vector space over D. So the only hypothesis of the Jacobson Density Theorem

is that R is a primitive ring.

Theorem IX.1.12. Jacobson Density Theorem.

Let R be a primitive ring and A a faithful simple R-module. consider A as a vector

space over the division ring HomR(A,A) = D. Then R is isomorphic to a dense

ring of endomorphisms of the D-vector space A.

Note. The only place the faithfulness of A is used in the proof of Jacobson’s

density Theorem is to show that homomorphism αis a monomorphism (one to

one). Weakening the hypothesis from ring R being primitive to just ring R having

a simple R-module A, we can conclude the following.
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Corollary IX.1.A. Let R be a ring such that A is a simple R-module. Consider

A as a vector space over the division ring HomR(A,A) = D. Then R has a ho-

momorphic image that is a dense ring of endomorphisms of the D-vector space

A.

Note. A converse of the Jacobson Density Theorem (which weakens the condition

of “dense ring of endomorphisms”) to give in Exercise IX.1.4(a), as follows.

Theorem IX.1.A. Let V be a vector space over a division ring D. If R is a subring

of HomD(V, V ) such that for any u, v ∈ V there exists θ ∈ R such that θ(u) = v

(this is called 1-fold transitive, or just transitive), then R is primitive.

Corollary IX.1.13. If R is a primitive ring, then for some division ring D either R

is isomorphic to the endomorphism ring of a finite dimensional vector space over D

or for every m ∈ N there is subring Rm of R and an epimorphism of rings mapping

Rm → HomD(Vm, Vm) where Vm is an n-dimensional vector space over D.

Note. The Jacobson Density Theorem is named for Nathan Jacobson (October 5,

1910 to December 5, 1999). He was born in Warsaw, Poland and emigrated to the

U.S. in 1918. He attended the University of Alabama as an undergraduate and got

his Ph.D. from Princeton University in 1934. His Ph.D. advisor was Joseph Wedder-

burn. He worked at a number of U.S. universities, including University of Chicago,

UNC-Chapel Hill, and Yale University. His work on the Density Theorem was
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published in: N. Jacobson, “Structure Theory of Simple Rings Without Finiteness

Assumptions,” Transactions of the American Mathematical Society 57(2), 228–245

(1945). He wrote the (misleadingly titled) texts Basic Algebra I (NY: Freeman,

1974) and Basic Algebra II (NY: Freeman, 1980); Dr. Debra Knisley of ETSU used

Basic Algebra I when teaching Modern Algebra 1 (MATH 5410) in the 1990s. A

former ETSU Department of Mathematics member from the 1960s to the 1990s,

Dr. Tae-Il Suh (June 1 1928 to July 27, 2009), was a student of Jacobson’s (he was

a 1961 graduate of Yale University).

Nathan Jacobson Tae-Il Suh

Theorem IX.1.14. The Wedderburn-Artin Theorem for Simple Artinian

Rings.

The following conditions on a left Artinian ring R are equivalent:

(i) R is simple;

(ii) R is primitive;
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(iii) R is isomorphic to the endomorphism ring of a nonzero finite dimensional

space V over a division ring D;

(iv) for some b ∈ N, R is isomorphic to the ring of all n × n matrices over a

division ring.

Note. We can think of the Wedderburn-Artin Theorem for Simple Artinian Rings

(Theorem IX.1.14) as a classification of simple Artinian rings (or of primitive Ar-

tinian rings). We will see a second version of the Wedderburn-Artin Theorem in

Theorem IX.2.2 when we give a classification of “semisimple” Artinian rings and a

third version in Theorem IX.5.4 when we classify semisimple Artinian K-algebras.

Note. There is no claim of uniqueness of dimD(V ) in part (iii) nor of n in part (iv)

in the Wedderburn-Artin Theorem for Simple Artinian Rings. However, uniqueness

of both hold for given R, and the division rings of (iii) and (iv) are unique up to

isomorphism, as we now show. We first need two lemmas.

Lemma IX.1.15. Let V be a finite dimensional vector space over a division ring

D. If A and B are simple faithful modules over the endomorphism ring R =

HomD(V, V ), then A and B are isomorphic R-modules.

Lemma IX.1.16. Let V be a nonzero vector space over a division ring D and let

R be the endomorphism ring HomD(V, V ). If g : V → V is a homomorphism of

additive groups such that gr = rg for all r ∈ R, then there exists d ∈ D such that

g(v) = dv for all v ∈ V .
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Proposition IX.1.17. Let V1 and V2 be vector spaces of finite dimension n over

the division rings D1 and D2, respectively.

(i) If there is an isomorphism of rings HomD1
(V1, V2) ∼= HomD2

(V2, V2), then

dimD1
(V1) = dimD2

(V2) and D1 is isomorphic to D2.

(ii) If there is an isomorphism of rings Matn1
(D1) ∼= Matn2

(D2), then n1 = n2 and

D1 is isomorphic to D2.

Note. Joseph Wedderburn was born February 2, 1882 in Scotland. He was the 10th

of 14 children. He studied at the University of Edinburgh, University of Leipzig,

and University of Berlin, and University of Chicago. He spent most of his career

with Princeton University where he was the Ph.D. advisor of Nathan Jacobson.

Quoting from his Wikipedia page:

“Wedderburn’s best-known paper was his sole-authored ‘On hyper-

complex numbers,’ published in the 1907 Proceedings of the London

Mathematical Society, and for which he was awarded the D.Sc. the

following year. This paper gives a complete classification of sim-

ple and semisimple algebras. He then showed that every semisim-

ple algebra finite-dimensional can be constructed as a direct sum

of simple algebras and that every simple algebra is isomorphic to

a matrix algebra for some division ring. The ArtinWedderburn

theorem generalises this result, with the ascending chain condi-

tion.” [https://en.wikipedia.org/wiki/Joseph Wedderburn, ac-

cessed 9/10/2018]
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He served in the British army from 1914 to 1918. He retired in 1945 and lived

mostly isolated until his death on October 9, 1948 at the age of 66.

Note. Emil Artin (March 3, 1898 to December 20, 1962) was born in Vienna,

Austria. He studied at the University of Vienna, interrupted by service in the

Austrian army in 1918. He spent 1921–22 at the University of Göttingen where he

worked closely with Emmy Noether. From 1922 to 1937 he was at the University of

Hamburg. His wife was half Jewish and he fled Germany in 1937 and took a job at

the University of Notre Dame. The following year he moved to Indiana University.

In 1946 he took a job at Princeton University and remained there until 1958 when

he took a leave of absence. Over his career, he directed over 30 Ph.D. students,

including Serge Lang and Hans Zassenhaus. One of his more influential books is the

68 page work, Galois Theory in the Notre Dame Mathematical Lectures, Number 2

(1942). Hungerford follows Artin’s approach to Galois theory in Chapter V (also see

my online notes for Section V.2, “The Fundamental Theorem (of Galois Theory),”

http://faculty.etsu.edu/gardnerr/5410/notes/V-2.pdf. His idea of what we

call “Artinian rings” is introduced in: E. Artin, C. Nesbitt, and R. Thrall, Rings
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with Minimum Condition, University of Michigan Publications in Mathematics 1,

Ann Arbor, Mich.: University of Michigan Press (1944). This work also includes

his contribution to the Wedderburn-Artin Theorem. These biographical notes are

based on the Wikipedia page at https://en.wikipedia.org/wiki/Emil Artin

(accessed 9/12/2018).

Note. The photographs in this section are from the MacTutor History of Mathe-

matics Archive at http://www-history.mcs.st-and.ac.uk/, with the exception

of the photograph of Dr. Tae-Il Suh which is from my personal collection.

Note. Finally, we return to Hungerford’s “big picture” conversation mentioned at

the beginnin of this section of notes. Hungerford states (page 415):

“Matrix rings and endomorphism rings of vector spaces over division

rings arise naturally in many different contexts. They are extremely

useful mathematical concepts. Consequently it seems reasonable to

take such rings, or at least rings that closely resemble them, as the

basis of a structure theory and to attempt to describe arbitrary rings

in terms of these basic rings.”

The two fundamental properties we focused on in this section were simplicity and
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primitivity. We related these ideas to endomorphism rings of a vactor space,

HomD(V, V ). We have seen that a primitive ring is isomorphic to a dense sub-

ring of the endomorphism ring of a vector space over a division ring (The Jacobson

Density Theorem, Theorem IX.1.12). A dense ring of endomorphisms of a vector

space V (and hence a primitive ring) is Artinian if and only if dimD(V ) is finite

(Theorem IX.1.9). A simple left Artinian ring is primitive (and a primitive left

Artinian ring is simple) and is isomorphic to an endomorphism ring of a finite

dimensional vector space (by the Wedderburn-Artin Theorem for Simple Artinian

Rings, Theorem IX.1.14) and the dimension of the vector space is unique and the

vector space is unique up to isomorphism (Theorem IX.1.17).
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