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Section IX.2. The Jacobson Radical

Note. On page 425, Hungerford motivates “radicals” by introducing property P

as an undesirable property. A P -radical P (R) of a ring R is then an ideal that has

property P and which contains all other ideal of R which have property P and for

which P/P (R) is zero. The desire is to find rings R for which the P -radical is zero,

P (R) = {0}. Such a ring is “P -radical free” or P -semisimple.

Note. Joseph Wedderburn first introduced the idea of a radical; his idea only

applied to (left) Artinian rings. His ideas have since been generalized to non-

Artinian rings. In this section we define and explore the Jacobson radical; it will

be used to define a “semisimple ring” (in Definition IX.2.9), and a version of the

Wedderburn-Artin Theorem will be given for semisimple rings in the next section

(in Theorem IX.3.3). The prime radical will be defined in Section IX.4 and used

to define semiprime rings (classification for which are given in Propositions IX.4.2

and IX.4.4). We need two definitions before we define the Jacobson radical.

Definition IX.2.1. An ideal P of a ring R is said to be left primitive if the quotient

ring R/P is a left primitive ring. Right primitive rings are similarly defined.

Note. R itself is an ideal of ring R. But R/R ∼= {0}. Now {0} has no simple

left R-modules (see Definition IX.1.1 of “simple module”) and so has no simple

faithful left R-modules so that {0} is not left primitive (see Definition IX.1.5). So

R/R ∼= {0} is not left primitive and so ideal R of R is not left primitive.
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Definition IX.2.2. An element a in a ring R is left quasi-regular if there exists

r ∈ R such that r + a + ra = 0. The element r is a left quasi-inverse of a. A

(right, left, or two sided) ideal I of R is a left quasi-regular if every element of I is

left quasi-regular. Similarly, a ∈ R is right quasi-regular if there exists r ∈ R such

that a + r + ar = 0. Right quasi-inverses and right quasi-regular ideals are defined

analogously.

Note IX.2.A. We adopt a set theoretic convention (Hungerford says this is a

theorem of set theory) that: In a class C of those subsets of a ring R that satisfies

a given property is empty, then ∩i∈CI is defined to be R.

Theorem IX.2.3. If R is a ring, then there is an ideal J(R) of R such that:

(i) J(R) is the intersection of all the left annihilators of simple left R-modules;

(ii) J(R) is the intersection of all the regular maximal left ideals of R;

(iii) J(R) is the intersection of all the left primitive ideals of R;

(iv) J(R) is a left quasi-regular left ideal which contains every left quasi-regular

left ideal of R;

(v) Statements (i)–(iv) are also true if “left” is replaced by “right.”

Definition. The ideal J(R) is the Jacobson radical of ring R.
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Note. Hungerford mentions that historically part (iv) of Theorem IX.2.3 (the

quasi-regularity part) was proved first but as the importance of modules in ring

theory was realized, the first three parts of Theorem IX.2.3 appeared (the parts

based on annihilators, regular maximal ideals, and left primitive ideals). We prove

Theorem IX.2.3 below after presenting five lemmas.

Lemma IX.2.4. If I (where I 6= R) is a regular left ideal of a ring R, then I is

contained in a maximal left ideal which is regular.

Lemma IX.2.5. Let R be a ring and let K be the intersection of all regular

maximal left ideals of R. Then K is a left quasi-regular left ideal of R.

Lemma IX.2.6. Let R be a ring that has a simple left R-module. If I is a left

quasi-regular left ideal R, then I is contained in the intersection of all the left

annihilators of simple left R-modules.

Lemma IX.2.7. An ideal P of a ring R is left primitive if and only if P is the left

annihilator of a simple left R-module.

Lemma IX.2.8. Let I be a left ideal of ring R. If I is left quasi-regular, then I is

right quasi-regular.
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Note. We now have the necessary equipment to give a proof of Theorem IX.2.3.

Note IX.2.B. If ring R has no left simple left R-modules (and so no left annihi-

lators of simple left R-modules) must satisfy J(R) = R by Theorem IX.2.3(i) and

Note IX.1.A. If R has an identity then every ideal is regular (take e = 1R in the

definition of “regular,” Definition IX.1.2) and by Theorem III.2.18 maximal ideals

always exist (and maximal ideals are proper subgroups of R by Definition III.2.17)

so J(R) 6= R by Theorem IX.2.3(ii).

Theorem IX.2.A. Let R be a commutative ring with identity which has a unique

maximal ideal M (such a ring is a local ring; see Definition III.4.12). Then J(R) =

M .

Example. As an application of Theorem IX.2.A, notice that the power series ring

F [[x]] over a field F is a local ring by Corollary III.5.10 and (also by Corollary

III.5.10) the principal ideal (x) is maximal. So, by Theorem IX.2.A, J(F [[x]]) =

(x).

Example. For another application of Theorem IX.2.A, consider Zpn (for n ≥ 2)

where p is prime. Then Zpn is a local ring (it is commutative with identity and

unique maximal ideal the principal ideal (p). So by Theorem IX.2.A, J(Zpn) = (p).

Exercise IX.2.10 gives a result applicable to J(Zm) for general m ∈ N.
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Definition IX.2.9. A ring R is (Jacobson) semisimple if its Jacobson radical

J(R) = {0}. R is a radical ring if J(R) = R.

Note. Hungerford warns (on page 429): “Throughout this book ‘radical’ always

means ‘Jacobson radical’ and ‘semisimple’ always means ‘Jacobson semisimple.’ ”

This is not a universal standard, since there are other types of radicals (other than

the Jacobson radical), as Hungerford describes at the beginning of this section.

Example. Consider division ring D. If I 6= {0} is an ideal of D then every nonzero

element of I must have its multiplicative inverse in I (since I is a subring of D)

and so 1D ∈ I . But then, I = R. So I = {0} is the only maximal ideal of R (recall

that maximal ideals are proper subrings of R; see Definition III.2.7). Since 1D ∈ D

then every ideal is a regular ideal of D (just take e = 1D in Definition IX.1.2),

then the only regular maximal left ideal of D is {0} and so by Theorem IX.2.3(ii),

J(R) = {0} and so D is semisimple. That is, every division ring is semisimple.

Example. Every maximal ideal in Z is of the form (p) where p is prime (by

Theorem III.3.4). Since Z has an identity, then every ideal is regular (let e be the

identity in Definition IX.1.2). So by Theorem IX.2.3(ii), J(R) = ∩p prime(p) = {0}

and hence Z is semisimple.
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Example. We now show that if D is a division ring, then the polynomial ring

R = D[x1, x2, . . . , xm] is semisimple. If f ∈ J(R) then by Theorem IX.2.3(iv) f is

left quasi-regular and also right quasi-regular (by Theorem IX.2.3(v)). By Exercise

IX.2.1, qR + f is a unit in R (and 1R = 1D, so 1D + f is a unit in R). By Theorem

III.6.1, the units in R = D[x1, x2, . . . , xm] are the nonzero elements of D (treated

as constant polynomials in R) so 1D + f ∈ D and hence f ∈ D (since −1D ∈ D).

So J(R) ⊂ D (that is, J(R) consists only of constant polynomials) and J(R) is an

ideal of D (constant multiples of constant polynomials are constant polynomials).

How as a division ring, D is a simple ring (see the Example in these class notes after

Lemma IX.1.A) and so either J(R) = {0} or J(R) = R. Now a = −1D is not left

quasi-regular since for all r ∈ R we have r+a+ra = r+(−1D)+r(−1D) = −1D 6= 0

(see Definition IX.2.2, “left quasi-regular element”) and so −1D 6∈ J(R) (using

Theorem IX.2.3(iv)). Therefore J(R) = {)} and R is semisimple.

Note. We now show interconnections between primitive, semisimple, and radical

rings.

Theorem IX.2.10. Let R be a ring.

(i) If R is primitive, then R is semisimple.

(ii) If R is simple and semisimple, then R is primitive.

(iii) If R is simple, then R is either a primitive semisimple ring or a radical ring.
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Theorem IX.2.B. Let D be a division ring. Then the ring of all n × n matrices

over D, Matn(D), is semisimple.

Note. Wedderburn introduced the idea of a radical (in a left Artinian ring) as the

maximal nilpotent ideal (not as the Jacobson radical, as we have used here). We

now consider connections between Wedderburn’s radical and the Jacobson radical.

Definition IX.2.11. An element a of a ring R is nilpotent if an = 0 for some

n ∈ N. A (left, right, two-sided) ideal I of R is nil if every element of I is nilpotent;

ideal I is nilpotent if In = {0} for some n ∈ N (here, In consists of all possible

sums of products of n elements of I).

Note. A nilpotent ideal is nil since In = {0} implies an = 0 for all a ∈ I . However,

a nil ideal need not be a nilpotent ideal, as illustrated in Exercise IX.2.11.

Theorem IX.2.12. If R is a ring, then every nil right or left ideal is contained in

the Jacobson radical J(R).

Note. If a ring R is nil (that is, every element of R is nilpotent), then J(R) = R

and R is a radical ring.
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Proposition IX.2.13. If R is a left (right) Artinian ring, then the radical J(R)

is a milpotent ideal. Consequently every nil left or right ideal of R is niplotent and

J(R) is the unique maximal nilpotent left (right) ideal of R.

Note. We now return to the beginning of this section and Hungerford’s discussion

if radicals in general. We start with a somewhat informal definition.

“Definition.” Let P be a property of rings and an ideal (or ring) I is a P -deal

(or P -ring) if I has property P . Assume that:

(i) the homomorphism image of a P -ring is a P -ring;

(ii) every ring R (or at least every ring in some specified class C) contains a P -ideal

P (R) (called the P -radical of R) that contains all other P -ideals of R;

(iii) the P -radical of the quotient ring R/P (R) is zero; and

(iv) the P -radical of ring P (R) is P (R).

A property P that satisfies (i)–(iv) is a radical property.

Note. Here, we take property P to be left quasi-regularity. By Theorem IX.2.3(iv),

J(R) is a left quasi-regular ideal which contains every left quasi-regular left ideal of

R, so that part (ii) of “Definition” is satisfied. A ring homomorphism necessarily

maps left quasi-regular elements onto left quasi-regular elements, so the homomor-

phic image of a P -ring (that is, a radical ring R for which J(R) = R) is a P -ring,

and part (i) of “Definition” is satisfied. For property (iii) of “Definition,” we need
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to show that R/J(R) = {0} (i.e., R is semisimple; see definition IX.2.9), which we

do in the following Theorem IX.2.14. For property (iv) of “Definition,” we need

to show that J(J(R)) = J(R) (i.e., J(R) is a radical ring; see Definition IX.2.9),

which we do in the following Theorem IX.2.16(iii). These results combine to give

that property P of left quasi-regularity is a radical property and its P -radical is

the Jacobson radical J(R).

Theorem IX.2.14. If R is a ring, then the quotient ring R/J(R) is semisimple.

Lemma IX.2.15. Let R be a ring and a ∈ R.

(i) If −a2 is left quasi-regular, then so is a.

(ii) a ∈ J(R) if and only if Ra is a left quasi-regular left ideal.

Theorem IX.2.16.

(i) If an ideal I of a ring R is itself considered as a ring, then J(I) = I ∩ J(R).

(ii) If R is semisimple, then so is every ideal of R.

(iii) J(R) is a radical ring.

Notes. We conclude this section with a result relating the Jacobson radical to

direct products.
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Theorem IX.2.17. If {Ri | i ∈ I} is a family of rings, then J
(
∏

i∈I Ri

)

=
∏

i∈I J(Ri).
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