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Section IX.3. Semisimple Rings

Note. Recall that a ring R is defined to be (Jacobson) semisimple if the Jacob-

son radical is zero, J(R) = {0} (Definition IX.2.9). We give a classification of

semisimple rings in Proposition IX.2.1. We give a version of the Wedderburn-Artin

Theorem for semisimple Artinian rings in Theorem IX.3.3 and then give several

other characterizations of such rings.

Definition IX.3.1. A ring is a subdirect product of the family of rings {Ri | i ∈ I}

if R is a subring of the direct product

rodi∈IRi such that πk(R) = Rk for every k ∈ I where πk :
∏

i∈I Ri → Rk is the

canonical epimorphism.

Definition IX.3.A. A ring S is isomorphic to a subdirect product of the family of

rings {Ri | i ∈ I} if there is a monomorphism (one to one homomorphism) of rings

ϕ : S →
∏

i∈I Ri such that πkϕ(S) = Rk for every i ∈ I .

Note. The idea of a subdirect product was introduced by Garret Birkhoff (January

19, 1911 – November 22, 1996) (famed coauthor of A Survey of Modern Algebra

[1941] and Algebra [1967] with Saunders MacLane) in “Subdirect Unions in Univer-

sal Algebra,” Bulletin of the American Mathematical Society, 50(10): 764–768 (see

the Wikipedia page for “Subdirect Product” at: https://en.m.wikipedia.org/

wiki/Subdirect product; accessed 10/7/2018). We limit our exploration of sub-

direct products to the next result (Proposition IX.3.2) and Exercise IX.3.2 in which
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the concept of subdirect irreducibility is introduced; Exercise IX.3.2(b) asks for a

proof that every ring is isomorphic to a subdirect product of a family of subdirectly

irreducible rings (a result which Hungerford credits to Birkhoff). Some authors

actually define a subdirect product as what Hungerford labels “isomorphic to a

subdirect product”; see page 52 of I.N. Herstein’s Noncommutative Rings, Carus

Mathematical Monographs 15, Mathematical Association of America, 1968.

Example. Let P = {2, 3, 5, 7, 11, . . .} be the set of prime integers. For each

k ∈ Z and p ∈ P , let kp = k = {. . . , k − 2p, k − p, k, k + p, k + 2p, . . .} ∈ Zp be

the image of k under the canonical epimorphism mapping Z → Zp. Then define

ϕ : Z →
∏

p∈P Zp as k 7→ {kp}p∈P . Then ϕ is a monomorphism of rings (by the

Fundamental Theorem of Arithmetic). Also, for fixed p′ ∈ P and k ∈ Z we have

πp′ϕ(k) = πp′ ({kp}p∈P ) = kp′ = {. . . , k − 2p′, k − p′, k, k + p′, k + 2p′, . . .} ∈ Zp′.

So as k ranges over Z, each equivalence class of Zp′ results from πp′ϕ(k) so that

πp′ϕ(Z) = Zp′. This holds for all p′ ∈ P so that can conclude that πpϕ(Z) = Zp for

every p ∈ P . So by Definition IX.3.A, Z is isomorphic to a subdirect product of

the family of rings (fields, in fact) {Zp | p ∈ P}.

Note. We saw in an example of section IX.2 (see the second example after the

definition of “semisimple,” Definition IX.2.9) that Z is semisimple. This fact, along

with the observation that Z is isomorphic to a subdirect product in the previous

example, is no coincidence, as we see in the next result which gives a classification

of semisimple rings.
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Theorem IX.3.2. A nonzero ring R is semisimple if and only if R is isomorphic

to a subdirect product or primitive rings.

Note. Just as we gave equivalent conditions to the property of “simple left Ar-

tinian ring” in the Wedderburn-Artin Theorem for Simple Artinian Rings (Theo-

rem IX.1.14), we now give conditions equivalent to the condition “semisimple left

Artinian ring.”

Theorem IX.3.3. The Wedderburn-Artin Theorem for Semisimple Ar-

tinian Rings.

The following conditions on a ring R are equivalent.

(i) R is a nonzero semisimple left Artinian ring;

(ii) R is a direct product of a finite number of simple ideals each of which is

isomorphic to the endomorphism ring of a finite dimensional vector space over

a division ring;

(iii) there exist division rings D1, D2, . . . , Dt and n1, n2, . . . , nt ∈ N such that R is

isomorphic to the ring Matn1
(D1) × Matn2

(D2) × · · · × Matnt
(Dt).

Note. We now extract some more properties of semisimple left Artinian rings from

the Wedderburn-Artin Theorem for Semisimple Artinian Rings (Theorem IX.3.3).
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Corollary IX.3.4.

(i) A semisimple left Artinian ring has an identity.

(ii) A semisimple ring is left Artinian if and only if it is right Artinian.

(iii) A semisimple left Artinian ring is both left and right Noetherian.

Note. A result related to Corollary IX.3.4, but not involving semisimple rings is

given in Exercise IX.3.13 where it is to be shown that a left Artinian ring with

identity is Noetherian.

Note. The next result is not needed in “the sequel,” but it gives a description of

ideals in a semisimple left Artinian ring.

Corollary IX.3.5. If I is an ideal in a semisimple left Artinian ring R, then

I = Re, where e is an idempotent element (that is, e2 = e) which is in the center

of R.

Note. The Wedderburn-Artin Theorem for Semisimple Artinian Rings (Theorem

IX.3.3) characterizes semisimple Artinioan rings in “ring theoretic terms.” We

next classify semisimple Artinian ring R in terms of properties of R-modules. This

will ultimately allow us to give a definition of “semisimple ring R ”in terms of

R-modules, showing our definition of semisimple is consistent with that of other

sources.
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Theorem IX.3.6. The following conditions on a nonzero module A over a ring R

are equivalent.

(i) A is the sum of a family of simple modules.

(ii) A is the (internal) direct sum of a family of simple submodules.

(iii) For every nonzero element a of A, we have Ra 6= {0}; and every submodule

B of A is a direct summand of A (that is, A = B ⊕ C for some submodule C

of A).

Definition IX.3.B. A module that satisfies the equivalent conditions of Theorem

IX.3.6 is simple (or completely reducible).

Note. Conditions (i) and (ii) of Theorem IX.3.6 for semisimple modules is similar to

condition (ii) of Theorem IX.3.3 for semisimple rings. Also, in Theorem IX.3.7(v),

if R is a semisimple left Artinian ring with identity, then every nonzero unitary left

R-module is semisimple. These facts (according to Hungerford, page 437) are the

motivation for the terminology “semisimple module.”

Note. We now give a number of conditions, in terms of R-modules, equivalent to

the condition of ring with identity R being semisimple (left) Artinian (by Corollary

IX.3.4(i), every semisimple Artinian ring has an identity so the existence of an

identity is not an added constraint). First we need a definition (the following idea

surfaced in the proof of Theorem IX.3.5).
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Definition. A subset {e1, e2, . . . , em} of ring R is a set of orthogonal idempotents

if e2

i = ei for all i and eiej = 0 for all i 6= j.

Theorem IX.3.7. The following conditions on a nonzero ring R with identity are

equivalent.

(i) R is semisimple left Artinian;

(ii) every unitary left R-module is projective;

(iii) every unitary left R-module is injective;

(iv) every short exact sequence of unitary left R-modules is split exact;

(v) every nonzero unitary left R-module is semisimple;

(vi) R is itself a unitary semisimple left R-module;

(vii) every left ideal of R is of the form Re with e idempotent;

(viii) R is the (internal) direct sum (as a left R-module) of minimal left ideals

K1,K2, . . . ,Km such that Ki = Rei (where ei ∈ Ki) for i = 1, 2, . . . ,m and

{e1, e2, . . . , em} is a set of orthogonal idempotents with e1 +e2 + · · ·+em = 1R.

Note. Since a semisimple ring is left Artinian if and only if it is right Artinian

by Corollary IX.3.4(ii), we can replace “left” with “right” in any (or all) parts of

Theorem IX.3.7. If we remove the word “unitary” from parts (ii), (iii), (iv), (v),

or (vi) then the result does not hold, as is to be shown in Exercise IX.3.10. The

results of this section to this stage give decompositions of semisimple left Artinian

rings; we now show the uniqueness of the decomposition into simple ideals (as given

in Theorem IX.3.3(ii)).
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Proposition IX.3.8. Let R be a semisimple left Artinian ring.

(i) R = I1 × I2 × · · · × In where each Ii is a simple ideal of R.

(ii) If J is any simple ideal of R, then J = Ik for some k.

(iii) If R = J1 × J2 × · · · × Jm with each Jk a simple ideal of R, then n = m and

(after re-indexing) Ik = Jk for k = 1, 2, . . . , n.

Definition. The uniquely determined simple ideals I1, I2, . . . , In in Proposition

IX.3.8 are the simple components of semisimple left Artinian ring.

Note. The uniqueness of the decomposition of a semisimple left Artinian ring into

minimal left ideals (as given in Theorem IX.3.7(iii)) is implied by the following.

Proposition IX.3.9. Let A be a semisimple module over a ring R. If there are

direct sum decompositions A = B1 ⊕ B2 ⊕ · · · ⊕ Bm and A = C1 ⊕ C2 ⊕ · · · ⊕ Cn,

where each Bi and Cj is a simple module of A, then m− n and (after re-indexing)

Bi
∼= Ci for i = 1, 2, . . . ,m.

Note. In Proposition IX.3.8 we have equality of the simple ideals, but in Proposi-

tion IX.3.9 we only have isomorphism of the simple submodules; Proposition IX.3.9

is false if we replace the isomorphism claim with an equality claim, as is to be shown

in Exercise IX.3.11.
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Note. The nest theorem is used in the proof of Theorem IX.6.7, which has as

a corollary Frobenius’ Theorem (which states that an algebraic division algebra

over R is isomorphic to either R, C, or H [the noncommutative division ring of

quaternions]).

Theorem IX.3.10. Let R be a semisimple left Artinian ring.

(i) Every simple left (respectively, right) R-module is isomorphic to a minimal

left (right) ideal of R.

(ii) The number of nonisomorphic simple left (respectively, right) R-modules is the

same as the number of simple components of R.
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