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Quaternions—The Degree of a Polynomial versus

the Number of Zeros

Note. In Thomas Hungerford’s Algebra (Springer-Verlag, 1974), the real quater-

nions are defined as follows (see page 117): Let S = {1, i, j, k}. Let H be the

additive abelian group R⊕R⊕R⊕R and write the elements of H as formal sums

(a0, a1, a2, a3) = a01 + a1i + a2j + a3k. We often drop the “1” in “a01” and replace

it with just a0. Addition in H is as expected:

(a0+a1i+a2j+a3k)+(b0+b1i+b2j+b3k) = (a0+b0)+(a1+b1)i+(a2+b2)j+(a3+b3)k.

We turn H into a ring by defining multiplication as

(a0 + a1i + a2j + a3k)(b0 + b1i + b2j + b3k) = (a0b0 − a1b1 − a2b2 − a3b3)

+(a0b1+a1b0+a2b3−a3b2)i+(a0b2+a2b0+a3b1−a1b3)j+(a0b3+a3b0+a1b2−a2b1)k.

This product can be interpreted by considering:

(i) multiplication in the formal sum is associative,

(ii) ri = ir, rj = jr, rk = kr for all r ∈ R,

(iii) i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

This ring is called the real quaternions (or simply the “quaternions”).

Note. From (iii) above we see that ij = k and ji = −k, so that ij 6= ji and H is

not a commutative ring. Recall that a ring D with identity 1D 6= 0 in which every

nonzero element is a unit (i.e., has a multiplicative inverse) is an integral domain.
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The quaternions are the standard example of a noncommutative division ring (see

Theorem A of Supplement. Quaternions—An Algebraic View).

Note. In Supplement. Quaternions—An Algebraic View, we considered the struc-

ture of the set of zeros of a quaternionic polynomial and saw that it is much more

complicated than in the settings of the real numbers R and complex numbers C. It

is shown that q2+1 ∈ H[x] has, not two, but uncountably many zeros! In Note [???]

of Supplement. Quaternions—An Algebraic View it is shown that x1i + x2j + x3k

is a zero of q2 + 1 if x1, x2, x3 satisfy x2
1 + x2

2 + x2
3 = 1. This inspired the following

definition.

Definition. We denote by S the two dimensional sphere (as a subset of the four

dimensional quaternions H) S = {q = x1i + x2j + x3k | x2
1 + x2

2 + x2
3 = 1}. As

observed above, for any I ∈ S we have I2 = −1. For x, y ∈ R we let x + yS denote

the two dimensional sphere x + yS = {x + yI | I ∈ S}. (We might think of x + yS

as a two dimensional sphere centered at (x, 0, 0, 0) with radius |y|.)

Note. Most of the remainder of this supplement is based on the following:

1. A. Pogorui and M. Shapiro, On the Structure of the Set of Zeros of Quaternionic

Polynomials, Complex Variables, 49(6) (2004), 379–389.

2. G. Gentili and C. Stoppato, Zeros of Regular Functions and Polynomials of a

Quaternionic Variable, Michigan Mathematics Journal 56 (2008), 655–667.

https://faculty.etsu.edu/gardnerr/5410/notes/Quaternions-Algebraic-Supplement.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/Quaternions-Algebraic-Supplement.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/Quaternions-Algebraic-Supplement.pdf
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3. G. Gentili and D. Struppa, On the Multiplicity of Zeroes of Polynomials with

Quaternionic Coefficients, Milan Journal of Mathematics bf 76 (2008), 15–25.

Note. The next result is fundamental in the structure of the set of zeros of a

quaternionic polynomial. It originally appears in Pogorui and Shapiro (2004). A

proof is given in Supplement. Quaternions—An Algebraic View (see the proof of

Theorem B).

Theorem B. Let p(q) =
∑N

n=0 qnan be a given quaternionic polynomial. Suppose

that there exist x0, y0 ∈ R and I, J ∈ S with I 6= J such that p(x0 + y0I) = 0 and

p(x0 + y0J) = 0. Then for all L ∈ S we have p(x0 + y0L) = 0.

https://faculty.etsu.edu/gardnerr/5410/notes/Quaternions-Algebraic-Supplement.pdf

