Quaternions—Degree of Polynomials 1

Quaternions—The Degree of a Polynomial versus
the Number of Zeros

Note. In Thomas Hungerford’s Algebra (Springer-Verlag, 1974), the real quater-

nions are defined as follows (see page 117): Let S = {1,i,7,k}. Let H be the

additive abelian group RGR G R @ R and write the elements of H as formal sums

(ag, a1, as, az) = agl + a1i + asj + azk. We often drop the “1” in “ayl” and replace

it with just ag. Addition in H is as expected:
(ap+aritazj+ask)+(bo+britboj+bsk) = (ao+bo)+(a1+b1)i+(az+bs)j+(as+bs)k.
We turn H into a ring by defining multiplication as

(ap + a1i + asj + agk)(bg + b1i + boj + bsk) = (apby — a1by — asbs — asbs)
+(agb1+a1bg+ azsbs — agba )i+ (agbe + asby+asby — a1bs) j + (apbs +asby+a1ba — asby ) k.
This product can be interpreted by considering:
(i) multiplication in the formal sum is associative,
(i) ri =ir, rj = jr, rk = kr for all r € R,
(iii) ? =2 =k*=ijk=—1,1j = —ji =k, jk = —kj =i, ki = —ik = j.

This ring is called the real quaternions (or simply the “quaternions”).

Note. From (iii) above we see that ij = k and ji = —k, so that ij # ji and H is
not a commutative ring. Recall that a ring D with identity 1p # 0 in which every

nonzero element is a unit (i.e., has a multiplicative inverse) is an integral domain.
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The quaternions are the standard example of a noncommutative division ring (see

Theorem A of Supplement. Quaternions—An Algebraic View).

Note. In Supplement. Quaternions—An Algebraic View, we considered the struc-
ture of the set of zeros of a quaternionic polynomial and saw that it is much more
complicated than in the settings of the real numbers R and complex numbers C. It
is shown that ¢>+1 € H|x] has, not two, but uncountably many zeros! In Note [??7]
of Supplement. Quaternions—An Algebraic View it is shown that x1i + x9j + 3k
is a zero of ¢* + 1 if @1, w9, v3 satisfy 22 + x3 + 23 = 1. This inspired the following

definition.

Definition. We denote by S the two dimensional sphere (as a subset of the four
dimensional quaternions H) S = {q = @17 + 225 + 23k | 22 + 23 + 23 = 1}. As
observed above, for any I € S we have I? = —1. For z,y € R we let z + yS denote
the two dimensional sphere x + yS = {x +yI | [ € S}. (We might think of = + yS

as a two dimensional sphere centered at (x,0,0,0) with radius |y|.)

Note. Most of the remainder of this supplement is based on the following:

1. A. Pogorui and M. Shapiro, On the Structure of the Set of Zeros of Quaternionic
Polynomials, Complex Variables, 49(6) (2004), 379-389.

2. G. Gentili and C. Stoppato, Zeros of Regular Functions and Polynomials of a
Quaternionic Variable, Michigan Mathematics Journal 56 (2008), 655-667.
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3. G. Gentili and D. Struppa, On the Multiplicity of Zeroes of Polynomials with
Quaternionic Coefficients, Milan Journal of Mathematics bf 76 (2008), 15-25.

Note. The next result is fundamental in the structure of the set of zeros of a
quaternionic polynomial. It originally appears in Pogorui and Shapiro (2004). A
proof is given in Supplement. Quaternions—An Algebraic View (see the proof of

Theorem B).

Theorem B. Let p(q) = Zfzv:o q"a, be a given quaternionic polynomial. Suppose
that there exist zg,y0 € R and I,J € S with I # J such that p(xo + yol) = 0 and
p(zo + yoJ) = 0. Then for all L € S we have p(xy + yoL) = 0.
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