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Supplement. Direct Products and Semidirect Products

Note. In Section I.8 of Hungerford, we defined direct products and weak direct

products. Recall that when dealing with a finite collection of groups {Gi}
n
i=1

then

the direct product and weak direct product coincide (Hungerford, page 60). In

this supplement we give results concerning recognizing when a group is a direct

product of smaller groups. We also define the semidirect product and illustrate its

use in classifying groups of small order. The content of this supplement is based on

Sections 5.4 and 5.5 of Davis S. Dummitt and Richard M. Foote’s Abstract Algebra,

3rd Edition, John Wiley and Sons (2004).

Note. Finitely generated abelian groups are classified in the Fundamental Theo-

rem of Finitely Generated Abelian Groups (Theorem II.2.1). So when addressing

direct products, we are mostly concerned with nonabelian groups. Notice that the

following definition is “dull” if applied to an abelian group.

Definition. Let G be a group, let x, y ∈ G, and let A,B be nonempty subsets of

G.

(1) Define [x, y] = x−1y−1xy. This is the commutator of x and y.

(2) Define [A,B] = 〈[a, b] | a ∈ A, b ∈ B〉, the group generated by the commutators

of elements from A and B where the binary operation is the same as that of

group G.

(3) Define G′ = {[x, y] | x, y ∈ G〉, the subgroup of G generated by the commuta-

tors of elements from G under the same binary operation of G. This is called

the commutator subgroup of G.
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Note. We have that [x, y] = 1 (we are using multiplicative notation here) if and

only if xy = yx. If G is abelian then G′ = 〈1〉 (and conversely).

Proposition DF.5.7. Let G be a group, let x, y ∈ G, and let H ≤ G. Then

(1) xy = yx[x, y].

(2) H E G if and only if [H,G] ≤ H.

(3) For any automorphism σ of G, we have σ([x, y]) = [σ(x), σ(y)]. Also, G′ is

a characteristic subgroup of G (denoted “G′ char G”; this means that every

automorphism of G maps G′ to itself, i.e., σ(G′) = G′) and G/G′ is abelian.

(4) G/G′ is the largest abelian quotient group of G in the sense that if H EG and

G/H is abelian, then G′ ≤ H. Conversely, if G′ ≤ H, then H E G and G/H

is abelian.

(5) If ϕ : G → A is any homomorphism of G into an abelian group A, then ϕ

factors through G′, i.e., G′ ≤ ker(ϕ) and the following diagram commutes:

G/G′

?

G -

A

@
@

@
@

@@R

ϕ
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Note. Another way of viewing (4) of Proposition DF.5.7 is to notice that a quotient

G/H (which automatically assumes HEG) is abelian if and only if the commutator

subgroup G′ is a subgroup of G, G′ ≤ H. Or, G/G′ is the largest abelian quotient

of G because g′ is the smallest subgroup yielding an abelian quotient.

Note. Dummitt and Foote call the following result the “Recognition Theorem.”

It is Hungerford’s Corollary I.8.7 for a collection of two groups (as opposed to a

finite collection, as given by Hungerford).

Theorem DF.5.9. Recognition Theorem for Direct Products.

Suppose G is a group with subgroups H and K such that

(1) H and K are normal in G, and

(2) H ∩ K = {1}.

Then HK = H × K.

Note. We now redefine “direct products,” now for just a product of two groups.

Definition. If G is a group and H and K are normal subgroups of G with H∩K =

{1}, we call HK = {hk | h ∈ H, k ∈ K} the internal direct product of H and K.

We call H × K = {(h, k) | h ∈ H, k ∈ K} the external direct product of H and K.

Note. By the Recognition Theorem (Theorem DF.5.9), HK and H × K are

isomorphic, hence we simply speak of the “direct product” of H and K.
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Example. If n is a positive odd integer, then we claim D2n
∼= Dn × Z2. Let

D2n = ({r, s} | {r2n = 1, s2 = 1, srs = r−1}) (see Exercise I.9.8 of Hungerford).

Let H = 〈s, r2〉 and let K = 〈rn〉. The geometric interpretation is that D2n

is the group of symmetries of a regular 2n-gon, H is the group of symmetries

of the regular n-gon inscribed in the 2n-gon based on every other vertex of the

2n-gon (say those with an even label), and K is the group of symmetries of the

2n-gon which rotates the 2n-gon half way around (notice (rn)2 = r2n = 1). Since

[D2n : H] = 2, then H E D2n. Since srs = r−1, s2 = 1, and s = s−1, then we have

(srs)n = srns = (r−1)n = r−n = rn. That is, s “centralizes” rn (recall that the

centralizer of x in G is CG(x) = {g ∈ G | gxg−1 = x}). Since rrnr−1 = rn then r

also centralizes rn. The center of group G is

{g ∈ G | gx = xg for all x ∈ G} = {g ∈ G | gxg−1 = x for all x ∈ G}

denoted C(G) by Hungerford and denoted Z(G) by Dummitt and Foote. So we

have 〈rn〉 = K ≤ Z(D2n) = C(D2n). So 〈rn〉 = K E D2n because D2n = 〈r, s〉 and

both r and s centralize rn. Finally, K 6≤ H since |K| = 2 (because (rn)2 = 1) and

H = 〈s, r2〉 where the order of r2 is n (and n is odd—this is where the oddness

of n is used); that is, rn 6∈ 〈r2〉 ≤ 〈s, r2〉. Since H 6≤ K then H ∩ K = {1}

by Lagrange’s Theorem (Corollary I.4.6). By the Recognition Theorem (Theorem

DF.5.9), HK ∼= H ×K ∼= Dn×Z2. Since |H ×K| = 4n, then |HK| = 4n and since

HK ≤ D2n, then it must be that HK = D2n. So D2n = HK ∼= H ×K ∼= Dn ×Z2.
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Note. We now turn our attention from direct products to “semidirect products.”

Recall that the internal direct product of H and K (subgroups of a group G),

HK, required that both H and K be normal subgroups of group G. In defining

the semidirect product, we relax the normality condition but introduce a use of

automorphisms of one of the two groups. We will be able to construct non-abelian

groups from H and K, even if both H and K are abelian.

Note. Exercise I.4.6 of Hungerford (and Proposition 3.14 of Dummitt and Foote)

states: If H and K are subgroups of a group, then HK is a subgroup if and only

if HK = KH.

Corollary DF.3.15. If H and K are subgroups of G and H ≤ NG(K) = {g ∈ G |

gKg−1 = K}, then HK is a subgroup of G. In particular, if K E G then HK ≤ G

for any H ≤ G.

Note. As motivation, suppose G is a group H ≤ G, K ≤ G, H EG, and H ∩K =

{1}. Then HK is a subgroup of G by Corollary DF.3.15 and every element of HK

can be uniquely written as a product hk for h ∈ H, k ∈ K. For h1k1, h2k2 ∈ HK

we have in group G that

(h1k1)(h2k2) = h1k1h2(k
−1

1
k1)k2 = h1(k1h2k

−1

1
)k1k2 = h3k3 ∈ HK

where h3 = h1(k1h2k
−1

1
) ∈ H (since H E G and so k1h2k

−1

1
∈ H) and k3 = k1k2.

Notice that all this depends on starting with a group G that has H,K as subgroups.

To define the semidirect product, we want to liberate ourselves from this setting

and find a way to interpret the quantity k1h2k
−1

2
independent of group G.
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Note. If we let group K act on group H by conjugation, that is k · h = khk−1 for

h ∈ H, k ∈ K where · represents action, then

(h1k1)(h2k2) = (h1k1h2h
−1

1
)(h1h2) = (h1k1 · h2)(k1k2).

Now action of k on H by conjugation yields an automorphism of H, kHk−1 = H

since HEG, for each k ∈ K. So we can define a homomorphism ϕ of K into Aut(H)

where ϕ(k) is the automorphism of H created from the mapping h → khk−1 for

all h ∈ H. So the quantity (h1k1 · h1)(k1k2) depends only on the binary operation

in H, the binary operation in K, and the homomorphism ϕ from K to Aut(H).

Notice that for such a general ϕ (not necessarily conjugation) we have k1 · h2 ∈ H

since ϕ(k1) ∈ Aut(H) and so k1 acts on h2 by mapping h2 to another element

of H under the automorphism ϕ(k1). Strictly speaking, we have ordered pairs of

elements, the first an element of H and the second an element of K. The following

results shows that this approach works and that we only need groups H, K, and

ϕ a homomorphism mapping K to Aut(H).

Theorem DF.5.10. Let H and K be groups and let ϕ be a homomorphism from

K into Aut(H). Let · denote action of K on H determined by ϕ. Let G be the

set of ordered pairs (h, k) with h ∈ H and k ∈ K and define the binary operation

(h1, k1)(h2, k2) = (h1k1 · h2, k1, k2).

(1) The binary operation makes G a group of order |G| = |H||K|.

(2) The sets H̃ = {(h, 1) | h ∈ H} and K̃ = {(1, k) | k ∈ K} are subgroups of G

and the maps h 7→ (h, 1) for h ∈ H and k 7→ (1, k) for k ∈ K are isomorphisms

of these subgroups with groups H and K.
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(3) H E G (associating H with its isomorphic copy of ordered pairs).

(4) H ∩ K = {1}.

(5) For all h ∈ H and k ∈ K, we have khk−1 = k · h = ϕ(k)(h).

Definition. Let H and K be groups and let ϕ be a homomorphism from K into

Aut(H). The group G described in Theorem DF.5.10 is the semidirect product of

H and K with respect to ϕ. This is denoted G = H oϕ K, or simply G = H o K

if there is no confusion as to what ϕ is.

Note. The notation “o” is meant to reflect the fact that H is a normal subgroup

of G (by Theorem DF.5.10(3))—the right hand half of the symbol is like the “/”

in the normal subgroup notation.

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H) be a

homomorphism. The following are equivalent.

(1) The identity set map between H o K and H × K (both consisting of ordered

pairs) is a group homomorphism (and hence H o K ∼= H × K).

(2) ϕ is the trivial homomorphism from K into Aut(H) (which maps all k ∈ K to

the identity automorphism).

(3) K E H o K.
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Example A. Let H be any abelian group and let K = 〈x〉 ∼= Z2. Define homomor-

phism ϕ : K → Aut(H) by defining the action of x ∈ K on h ∈ H as x · h = h−1.

Then G = H oϕ K contains the subgroup H (technically H̃ in the notation of

Theorem DF.5.10(2)) of index 2 (since there are 2 cosets of H, namely 1H = H

and xH) and so by Theorem DF.5.10(5),

x · h = xhx−1 = h−1 for all h ∈ H.

If H ∼= Zn then G = H oϕ K ∼= Dn (think of elements of Zn as rotations; the action

of K ∼= Z2 on H is like a mirror image combined with rotations). In other words,

Dn
∼= Zn oϕ Z2. To see this more clearly, recall that a presentation of Dn is given

by ({r,m} | {rn = m2 = 1, rm = mr−1}). Since we have xhx−1 = h1 for all h ∈ H

then x2hx−1 = xh−1 or, since x2 = 1 and x−1 = x, hx = xh−1. So the isomorphism

between Dn and Zn o Z2 is given by mapping x 7→ m and h 7→ r where h is a

generator of Zn. Similarly, D∞
∼= Z oϕ Z2.

Example B. We modify the previous example. We let H be any abelian group

and let K = 〈x〉 ∼= Z2n. Define K acting on H again by x · h = h−1 (so again x2

acts as the identity on H), and again xhx−1 = h−1 for all h ∈ H. Also, x2hx−2 = h

since x2 and x−2 act as the identity. Hence x2h = hx2 for all h ∈ H. So x2

commutes with all elements of H and, since Z2n is cyclic, x2 commutes with all

elements of K. So x2 ∈ C(H oϕ K) = {g ∈ H oϕ K | g` = `g for all ` ∈ H oϕ K}

(called the center of H oϕ K). In this example, we denote the identity of H and

K both as e (instead of 1, since we now consider specific additive groups). Notice

that for (h, e), (e, x) ∈ H oϕ Z2n we have (h, e)(e, x) = (h e · e, ex) = (h, x) and
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(e, x)(h, e) = (h e · h, xe) = (x · h, x) = (h−1, x). So H oϕ Z2n is nonabelian if

h 6= h−1 for some h ∈ H. In particular, for H = Z3 and K = Z4, we see that

H oϕ K = Z3 oϕ Z4 is a nonabelian group of order 12 (by Theorem DF.10(1)). We

already know that A4 and D12 are nonabelian groups of order 12. Now Z3 oϕ Z4

has Z4 as a subgroup (in fact, this is a Sylow p-subgroup). However, the Sylow

p-subgroups (for p = 2) of A4 and D4 are V = Z2 × Z2 (the Klein-4 group).

So Z3 oϕ Z4 is isomorphic to neither D4 nor A4. We mentioned in the notes for

Hungerford’s Section II.6, that a presentation for the dicyclic group Dic3 (or order

12) is ({a, b}, {a6 = e, a3 = b2, ab = ba−1}). Let y be a generator of H ∼= Z3 and let

x be a generator of K ∼= Z4. Define a = (y, x2) and b = (e, x). Then bn = (e, xn)

and so b4 = (e, e). Also,

a3 = (y, x2)3 = (y, x2)(y x2 · y, x4) = (y, x2)(y2, e)

= (y x2 · y2, x2) = (y3, x2) = (e, x2) = b2,

and so a6 = (e, e). Now a−1 = (x−2 · y−1, x−2) = (y−1x2) and so

ab = (y, x2)(e, x) = (y x2 · e, x3) = (y, x3),

ba−1 = (e, x)(y−1, x2) = (e x · y−1, x3) = (y, x3).

So the presentation of Dic3 is satisfied by these two elements of Z3 oϕ Z4. Since

Dic3 and Z3 oϕ Z4 are both of order 12, then in fact Dic3
∼= Z3 oϕ Z4. This doesn’t

change our list of groups of order 12 given in Hungerford’s Section II.6, but it does

give us an alternate interpretation of Dic3 in terms of semidirect products.

We now give another representation of this group. Based on the notation used

in Schaum’s Outline of Theory and Problems of Group Theory by B. Baumslag and
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B. Chandler (1968), we can let A =





0 i

i 0



 and B =





ε 0

0 ε2



 where i2 = −1

and ε3 = 1 but ε 6= 1 (so ε is a primitive complex cube root of 1). Then we get the

following multiplication table.

1 A A
2

A
3

B B
2

AB A
2
B A

3
B AB

2
A

2
B

2
A

3
B

2

1 1 A A
2

A
3

B B
2

AB A
2
B A

3
B AB

2
A

2
B

2
A

3
B

2

A A A
2

A
3 1 AB AB

2
A

2
B A

3
B B A

2
B

2
A

3
B

2
B

2

A
2

A
2

A
3 1 A A

2
B A

2
B

2
A

3
B B AB A

3
B

2
B

2
AB

2

A
3

A
3 1 A A

2
A

3
B A

3
B

2
B AB A

2
B B

2
AB

2
A

2
B

2

B B AB
2

A
2
B A

3
B

2
B

2 1 A A
2
B

2
A

3
AB A

2
A

3
B

B
2

B
2

AB A
2
B

2
A

3
B 1 B AB

2
A

2
A

3
B

2
A A

2
B A

3

AB AB A
2
B

2
A

3
B B

2
AB

2
A A

2
A

3
B

2 1 A
2
B A

3
B

A
2
B A

2
B A

3
B

2
B AB

2
A

2
B

2
A

2
A

3
B

2
A A

3
B 1 AB

A
3
B A

3
B B

2
AB A

2
B

2
A

3
B

2
A

3 1 AB
2

A
2

B A A
2
B

AB
2

AB
2

A
2
B A

3
B

2
B A AB A

2
B

2
A

3
B

2
A

2
A

3
B 1

A
2
B

2
A

2
B

2
A

3
B B

2
AB A

2
A

2
B A

3
B

2 1 AB
2

A
3

B A

A
3
B

2
A

3
B

2
B AB

2
A

2
B A

3
A

3
B B

2
A A

2
B

2 1 AB A
2

If we associate matrix A with element b above and associate matrix A2B with

element a above (or if we associate matrices A and B with elements (1, x) and

(y, 1) in Z3 o Z4, respectively), then this yields an isomorphism between the group

generated by matrices A and B and Z3 o Z4.
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Example C. Let p and q be primes such that p > q. By Hungerford’s Theorem

II.6.1, if q - (p − 1) then every group of order pq is isomorphic to Zpq. If q |

(p−1) then there is (up to isomorphism) one abelian group Zpq of order pq and one

nonabelian group of order pq. We now show that, in fact, the nonabelian group

is G = Zp o Zq for some ϕ ∈ Aut(Zq). Notice that when q = 2, the nonabelian

group of order 2q is isomorphic to Dp by Hungerford Corollary II.6.2 (and this is

isomorphic to Zp o Z2 by Example A). So now assume q | (p − 1). Then H = Zp

is cyclic and has p − 1 different generators (namely, 1, 2, . . . , p − 1). So Aut(Zp)

is a group of order p − 1 (every automorphism is determined by where, say 1, is

mapped since 1 generates Zp, and the image of 1 generates Zp—so there are p − 1

choices for the image of 1). Since q is prime and q | (p − 1), then by Cauchy’s

Theorem (Hungerford’s Theorem II.5.2) Aut(Zp) has a subgroup of order q. Since

this subgroup is order q (prime) then it is cyclic, and K = Zq is cyclic of order q,

so there is an isomorphism from K to this subgroup of Aut(Zp). In other words,

there is a homomorphism ϕ from K = Zq to Aut(H) = Aut(Zp). Notice that ϕ

is a nontrivial homomorphism (since its image is not the identity automorphism

of Zp). So we can form the group H o K = Zp o Zq. By Proposition DF.5.11,

K = Zq is not a normal subgroup of H oK. Therefore H oK is not abelian (for if

it were, all subgroups would be normal). So the unique nonabelian group of order

pq is isomorphic to Zq oϕ Zq where ϕ is as described above.

Note. Dummit and Foote state a “Recognition Theorem” for semidirect prod-

ucts. As with the Recognition Theorem for Direct Products, this new Recognition

Theorem tells us when G = HK is isomorphic to H o K.
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Theorem DF.5.12. Recognition Theorem for Semidirect Products.

Suppose G is a group with subgroups H and K such that

(1) H E G, and

(2) H ∩ K = {1}.

Let ϕ : K → Aut(H) be the homomorphism defined by mapping k ∈ K to the

automorphism of left conjugation by k on H. Then HK ∼= H o K. In particular,

if G = HK with H and K satisfying (1) and (2), then G is the semidirect product

of H and K.

Note. To use the Recognition Theorem for Semidirect Products (Theorem DF.5.12),

we follow the outline:

(a) Show that every group of order n has proper subgroups H and K such that

H E G, H ∩ K = {1}, and G = HK.

(b) Find all possible groups isomorphic to H or K.

(c) For each pair H, K in (b). find all possible homomorphisms ϕ : K → Aut(H).

(d) For each H, K, ϕ in (c), form the semidirect product H o K and determine

among the resulting groups which are isomorphic.

This gives a list of the distinct isomorphic types of groups of order n. We now

illustrate this approach in two examples.
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Example. Groups of order 30.

First, we show that a group G of order 30 has a subgroup of order 15. Group G

has Sylow p-subgroups of orders 3 and 5 by the First Sylow Theorem (Theorem

II.5.7). The Sylow theorems can be used to show that either the group of order 3

or the group of order 5 is a normal subgroup of G (see Fraleigh’s Example 37.12 or

Dummit and Foote’s example on their pages 143–144). Then by Corollary DF.3.15

(the “in particular” part) the product H1K1 of the two Sylow p-subgroups is a

subgroup of group G and |H1K1| = 15. So G has a subgroup of order 15; this

subgroup is normal in G since the index (G : H) = 2, and so G is not simple.

By the First Sylow Theorem (Theorem II.5.7) G has a Sylow p-subgroup of order

2, say K. Let H by the normal subgroup of order 15. The elements of H are of

order 1, 3, 5, or 15. The elements of K are of order 1 or 2. So H ∩K = {1}. So H

and K satisfy the hypotheses of the Recognition Theorem for Semidirect Products

(Theorem DF.5.12) and so (by the “in particular” part), G ∼= H o K for some

ϕ : K → Aut(H). This completes part (a) of the outline.

Now |H| = 3 × 5 and so by Example C above, we have that H ∼= Z15. Since

|K| = 2 then K ∼= Z2 and this completes (b) of the outline.

One can show that the automorphism group of H is Aut(H) = Aut(Z15) ∼=

Z4×Z2. (Proposition 4.16 of Dummit and Foote implies that Aut(Z15) is isomorphic

to the group of units of Z15 under multiplication, (Z15)
×, a group of order 8. It is

then straightforward to show that (Z15)
× ∼= Z4×Z2.) So Aut(H) contains precisely

three elements of order 2. Now H ∼= Z15
∼= Z5 × Z3 so, say, H = 〈a〉 × 〈b〉 where a

has order 5 and b has order 3. Then the three elements of Aut(H) of order 2 must
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behave as follows:

α1 :
a 7→ a

b 7→ b−1,
α2 :

a 7→ a−1

b 7→ b,
α3 :

a 7→ a−1

b 7→ b−1.

Since K is of order 2, then there are three nontrivial homomorphisms from K to

Aut(H) given by sending the generator of K into one of α1, α2, or α3. There is

also the trivial homomorphism from K to Aut(H), but this yields a direct product

and HK = H × K ∼= Z30 This completes (c) of the outline. We now go through

the list of the three nontrivial homomorphisms to complete part (d) of the outline.

Let K = 〈k〉. If ϕ1 : K → Aut(H) is defined as ϕ1(k) = α1 (so in terms of group

action, k · a = ϕ1(a) = a and k · b = ϕ1(b) = b−1). Then G1 = H oϕ1
K. Dummit

and Foote claim that it is easy to see that G1
∼= Z5 × D3 (Hmmm. . . ).

If ϕ2 : K → Aut(H) is defined as ϕ2(k) = α2 (so in terms of group action,

k · a = α2(a) = a−1 and k · b = α2(b) = b). Then G2
∼= H oϕ2

K and “it is easily

seen” that G2
∼= Z × D5.

If ϕ3 : K → Aut(H) is defined as ϕ3(k) = α3 (so in terms of group action,

k · a = α3(a) = a−1 and k · b = α3(b) = b−1). Then G3
∼= H oϕ3

K and “it is easily

seen” that G3
∼= D15.

By considering the centers of these four groups, Z30, Z5 ×D3, Z3 ×D5, and D15

(which are of sizes 30, 4, 3, and 1, respectively) we find that no pair of these groups

is isomorphic, completing part (d) of the outline.

Note. The use of the Recognition Theorem for Semidirect Products was more for

its use in restricting the population of groups to only four, as opposed to actually

giving us a new group that could not be expressed as a direct product of groups

already encountered.
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Note. The idea of internal and external products can be extended to semidi-

rect products. In A. S. Abhyankar and C. Christensen’s “Semidirect Products:

x 7→ ax + b as a First Example” (Mathematics Magazine 75(4), 284–289 (2002)),

the definitions of these two concepts are given. Dummit and Foote’s definition

of semidirect product (as justified by Theorem DF.5.10) is what Abhyankar and

Christensen refer to as the external semidirect product. Dummit and Foote’s Recog-

nition Theorem for Semidirect Products (Theorem DF.5.12) describe the conditions

under which a group is, in Abhyankar and Christensen’s terminology, an inner di-

rect product. This is consistent with Hungerford’s use of the terms “internal” and

“external.” When speaking of G as an internal product, group G is expressed as

a product of two of its subgroups H and K in the sense that G = HK. When

speaking of G as an external product, group G is isomorphic to two of its subgroups

H and K; that is, G ∼= H o K (in this case, H o K consists of ordered pairs of

elements of G whereas G consists of, well, elements of G!).

Note. Dummit and Foote’s use of “recognition theorems” (Theorems DF.5.9 and

DF.5.12) is reasonable since they let us recognize when a given group is isomorphic

to a direct or semidirect product. However, they do not allow us to construct new

groups from given groups. The direct product always produces a group (that is, the

binary operation is always defined since it is just based on the binary operations

of the groups in the product). The semidirect product allows us to produce a new



Supplement: Direct Products and Semidirect Products 16

group from two given groups, provided we can find a homomorphism ϕ from K into

Aut(H). So we might want to think of recognition theorems and internal products

as a way to determine when given groups are isomorphic, whereas the operation of

taking an external product allows us to produce new groups.
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