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Supplement. A Proof of

The Snake Lemma

Note. In his supplement, we give a proof of the Snake Lemma, stated in Section

IV.1. Modules, Homomorphisms, and Exact Sequences; see Note IV.1.J. The proof

given in this supplement is based on a document formerly posted online by Richard

Blute of the University of Ottawa (accessed 10/20/2018). Unfortunately, Professor

Blute has retired and this link does not currently (December 2023) work. He

still maintains a personal website (accessed 12/17/2023), but the Snake Lemma

document is apparently not posted there. We closely follow his presentation, but

we largely use different symbols here. We present the proof in several steps; at each

new step, we reuse symbols in new (but similar) roles.

The Snake Lemma. Let R be a ring and

0−→A′−→B′−→C ′

A −→B −→C −→0

↓
α

↓
β

↓
γ

a commutative diagram of R-modules and R-module homomorphisms such that

each row is an exact sequence. Then there is an exact sequence

Ker(α) → Ker(β) → Ker(γ)
δ−→ Coker(α) → Coker(β) → Coker(γ).

If, in addition, fA : A → B is a monomorphism then so is the homomorphism

kα : A′ → B′, and if gB′ : B′ → C ′ is an epimorphism then so is bβ : Coker(β) →
Coker(γ). Under these added conditions, we can extend the exact sequence on the

left to include “0 →” and on the right to include “→ 0.”

https://faculty.etsu.edu/gardnerr/5410/notes/IV-1.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/IV-1.pdf
http://aix1.uottawa.ca/~rblute/COURSE2/SnakeLemma.pdf
http://aix1.uottawa.ca/~rblute/COURSE2/SnakeLemma.pdf
https://richardblute.ca/
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Proof. First, let fA : A → B, fB : B → C, gA′ : A′ → B′, and gB′ : B′ → C ′ be the R-

module homomorphisms. Define kα : Ker(α) → Ker(β) and kβ : Ker(β) → Ker(γ) as the restricted

functions fA|Ker(α) and fB|Ker(β), respectively. Notice that if a ∈ Ker(α) then

β(fA(a)) = gA′(α(a)) since the diagram is commutative

= g′A(a)(0) = 0 since gA′ is a homomorphism,

so in fact kα = fA|Ker(α) does map Ker(α) to Ker(β) (and similarly kβ = fB|Ker(β) maps as claimed).

So the given diagram including the R-module homomorphisms is:

0 −→ A′ gA′−→ B′ gB′−→ C ′

A
fA−→ B

fB−→ C −→ 0

↓
α

↓
β

↓
γ

Now, Coker(α) = A′/Im(α) and Coker(β) = B′/Im(β) by definition of “cokernel.” Define

cα : Coker(α) → Coker(β) and cβ : Coker(β) → Coker(γ) as

cα(a′ + Im(α)) = gA′(a′) + Im(β) and cβ(b′ + Im(β)) = gB′(b′) + Im(γ).

We now show cα and cβ are well-defined. If a′1 + Im(α) = a′2 + Im(α), then a′1 − a′2 ∈ Im(α) so that

a′1 − a′2 = α(a) for some a ∈ A. Then

gA′(a′1 − a′2) = gA′(α(a)) = (gA′ ◦ α)(a)

= (β ◦ fA)(a) since the diagram is commutative

= β(fA(a)) ∈ Im(β),

so

cα(a′2 + Im(α)) = gA′(a′2) + Im(β) = gA′(a′2) + gA′(a′1 − a′2) + Im(β)

= gA′(a′2) + gA′(a′1)− gA′(a′2) + Im(β) = gA′(a′1) + Im(β) = cα(a′1 + Im(α))

and so cα is well-defined (that is, independent of the representative of the coset used). Similarly, cβ

is well-defined. The sequence to be shown exact is then:

Ker(α)
kα→ Ker(β)

kβ→ Ker(γ)
δ−→ Coker(α)

cα→ Coker(β)
cβ→ Coker(γ).

We now define δ : Ker(γ) → Coker(α) (the “middle of the snake”). Let c ∈ Ker(γ). Since the

first row is exact, then fB is an epimorphism (“onto”; because fC : C → {0} implies Im(fB) =
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Ker(fC) = C), and so there is some b ∈ B such that fB(b) = c. Now β(b) ∈ B′. Since c ∈ Ker(γ)

then

gB′(β(b)) = (gB′ ◦ β)(b)

= (γ ◦ fB)(b) since the diagram is commutative

= γ(fB(b)) = γ(c) since fB(b) = c

= 0 since c ∈ Ker(γ).

So β(b) ∈ Ker(gB′) = Im(fA′) since the second row is exact. So β(b) ∈ Ker(gB′) = Im(fA′) since the

second row is exact. So β(b) = gA′(a′) for some a′ ∈ A′. Introducing g0 : {0} → A′ (the inclusion

map) and using the fact that the second row is exact, Im(g0) = Ker(gA′) = {0} and so gA′ is a

monomorphism (one to one) by Theorem I.2.3 (see also Note IV.1.C) and so a′ is the unique element

of A′ such that β(b) = gA′(a′). Now define

δ(c) = a′ + Im(α).

Now we have determined a′ as follows:

fB(b) = c for some b ∈ B

β(b) = gA′(a′) for unique a′ ∈ A′ (unique for given b).
(∗)

So we have δ(c) = (gA′)−1(β(b)) + Im(α) where b is some element of the inverse image of {c} under

fB, b ∈ f−1
B [{c}]. So to show that δ is well-defined (this is the topic of discussion between Dr.

Kate Gunzinger and Mr. Cooperman in the 1980 Rastar Films’ It’s My Turn) we need to consider

the value of δ(c) for two different elements of f−1
B [{c}], say both b1 and b2 satisfy fB(b1) = c and

fB(b2) = c. As above, there are unique a′1 and a′2 such that gA′(a′1) = β(b1) and gA′(a′1) = β(b2).

Notice that fB(b1 − b2) = fB(b1)− fB(b2) = c− c = 0 so that b1 − b2 ∈ Ker(fB). Since the first row

is exact then Im(fA) = Ker(fB), there is a ∈ A such that fA(a) = b1 − b2. Hence,

gA′(α(a)) = (gA′ ◦ α)(a)

= (β ◦ fA)(a) since the diagram is commutative

= β(fA(a)) = β(b1 − b2) = β(b1)− β(b2)

= gA′(a′1)− gA′(a′2) = gA′(a′1 − a′2).

Since gA′ is a monomorphism, then a′1 − a′2 = α(a) ∈ Im(α). Hence

a′2 + Im(α) = a′2 + α(a) + Im(α) = a′2 + (a′1 − a′2) + Im(α) = a′1 + Im(α),

so δ is well-defined. We now show exactness and work left to right.
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Since the top row is exact, then Im(fA) = Ker(fB) and so fB ◦fA is the zero function. Therefore

kβ ◦ kα = fB|Ker(β) ◦ fA|Ker(α) is the zero function. So Im(kα) ⊂ Ker(kβ). Conversely, suppose

b ∈ Ker(β) with kβ(b) = 0 (that is, b ∈ Ker(kβ)). Then fB(b) = 0, so b ∈ Ker(fB) = Im(fA) and

hence b = fA(a) for some a ∈ A. We have

gA′(α(a)) = (gA′ ◦ α)(a)

= (β ◦ fA)(a) since the diagram is commutative

= β(fA(a)) = β(b) = 0 since b ∈ Ker(β).

Since gA′ is a monomorphism (one to one), then α(a) = 0 and a ∈ Ker(α). So kα(a) = fA(a) = b ∈
Im(kα) and Ker(kβ) ⊂ Im(kα). Hence Im(kα) = Ker(kβ) and the sequence is exact at Ker(β).

Let b ∈ Ker(β) (Ker(β) is the domain of kβ) so that kβ(b) is an arbitrary element of Im(kβ). Since

β(b) = 0 then β(b) = gA′(0) (since gA′ : A′ → B′ is a homomorphism), so δ(kβ(b)) = 0 + Im(α) =

Im(α) = 0 ∈ A′/Im(α) = Coker(α) (since β(b) = gA′(0) and a′ = 0 in the notation of the definition

of δ). Since b ∈ Ker(β) is arbitrary (and Ker(β) is the domain of k(β)) then δ(kβ(b)) = (δ◦kβ)(b) = 0

for all b ∈ Ker(β), and so Im(kβ) ⊂ ker(δ). Conversely, suppose c ∈ Ker(γ) (Ker(γ) is the domain

of δ) and c ∈ Ker(δ). Then c = fB(b) for some b ∈ B (since the first row is exact and Im(fB) = c;

that is, fB is an epimorphism because the kernel of the mapping C → {0} is all of C). By the

definition of δ, since c ∈ Ker(δ), we have

δ(c) = Im(α) = 0 ∈ A′/Im(α) = Coker(α).

Since c = fB(b) then β(b) = gA′(a′) for some a′ ∈ A′ (see (∗) above), and since δ(c) = a′ + Im(α) =

Im(α), it must be that a′ ∈ Im(α). Say a′ = α(a) for a ∈ A. Then

β(fA(a)) = (β ◦ fA)(a)

= (gA′ ◦ α)(a) since the diagram is commutative

= gA′(α(a)) = gA′(a′)

= β(b) since β(b) = gA′(a).

Since β is a homomorphism, 0 = β(b)− β(fA(a)) = β(b− fA(a)) and b− fA(a) ∈ Ker(β). Finally,

kβ(b− fA(a)) = fB(b− fA(a)) since b− fA(a) ∈ Ker(β) and by the definition of kβ as fB|Ker(β)

= fB(b)− (fB ◦ fA)(a) since fB is a homomorphism

= fB(b)− 0 since Im(fA) = Ker(fB) by the exactness of the first row

= fB(b) = c since c = fB(b).
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That is, c ∈ Im(kβ). Since c is an arbitrary element of Ker(δ) (in the domain Ker(γ) of δ), then

Ker(δ) ⊂ Im(kβ). Hence Im(kβ) = Ker(δ) and the sequence is exact at Ker(γ).

Let c ∈ Ker(γ) so that δ(c) is an arbitrary element of Im(γ). Since fB is an epimorphism by the

exactness of the first row, then c = fB(b) for some b ∈ B. By (∗) above we have β(b) = gA′(a′) for

some a′ ∈ A′. So by the definition of δ, δ(c) = a′ + Im(α). Then

(cα ◦ δ)(c) = cα(δ(c)) = cα(a′ + Im(α))

= gA′(a′) + Im(β) by the definition of cα

= β(b) + Im(β) since β(b)gA′(a′)

= Im(β) since β(b) ∈ Im(β)

= 0 ∈ B′/Im(β).

Since c is an arbitrary element of Ker(γ) (the domain of δ), then cα ◦ δ is the zero function and

Im(δ) ⊂ Ker(cα). Conversely, suppose a′ + Im(α) ∈ A′/Im(α) = Coker(α) is in the kernel of cα.

Then

cα(a′ + Im(α)) = gA′(a′) + Im(β) by the definition of cα

= Im(β) = 0 ∈ A′/Im(α) = Coker(α) since a′ + Im(α) ∈ Ker(cα),

and so gA′(a′) ∈ Im(β), say gA′(a′) = β(b) for some b ∈ B. Let c = fB(b). Then

γ(c) = γ(fB(b)) = (γ ◦ fB)(b)

= (gB′ ◦ β)(b) since the diagram commutes

= gB′(β(b)) = gB′(gA′(a′)) = 0 since Im(gA′) = Ker(gB′)

by the exactness of the second row,

so c ∈ Ker(γ) (the domain of δ) and δ(c) = a′ + Im(α) by the definition of δ (and the choice of c).

So a′ + Im(α) ∈ Im(δ). Since a′ + Im(α) is an arbitrary element of Ker(cα) then Ker(cα) ⊂ Im(δ).

Hence Im(δ) = Ker(cα) and the sequence is exact at Coker(α).

Since the second row is exact, then Im(gA′) = Ker(gB′) and so gB′ ◦ gA′ is the zero function.

Therefore for a′ + Im(α) ∈ Coker(α),

(cβ ◦ cα)(a′ + Im(α)) = cβ(cα(a′ + Im(α)))

= cβ(gA′(a′) + Im(β)) by the definition of cα

= gB′(gA′(a′)) + Im(γ) by the definition of cβ
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= (gB′ ◦ gA)(a′) + Im(γ) = Im(γ) since gB′ ◦ gA′ is the zero function

= 0 ∈ C ′/Im(γ) = Coker(γ).

Since a′ + Im(α) is an arbitrary element of Coker(α) (the domain of cβ ◦ cα), then cβ ◦ cα is the

zero function and Im(cα) ⊂ Ker(cβ). Conversely, suppose b′ + Im(β) ∈ B′/Im(β) = Cojer(β) is in

Ker(cβ). Then

cβ(b′ + Im(β)) = gB′(b′) + Im(γ) = Im(γ) = 0 ∈ B′/Im(β) = Coker(β),

gB′(b′) ∈ Im(γ), and so γ(c) = gB′(b′) for some c ∈ C. Since fB is an epimorphism by the exactness

of the first row, then c = fB(b) for some b ∈ B. Now β(b) ∈ Im(β), so b′+Im(β) = b′−β(b)+Im(β)

in B′/Im(β) = Coker(β). Now

gB′(b′ − β(b)) = gB′(b′)− gB′(β(b)) = gB′(b′)− (gB′ ◦ β)(b)

= gB′(b′)− (γ ◦ fB)(b) since the diagram is commutative

= γ(c)− γ(fB(b)) since γ(c) = gB′(b′)

= γ(c)− γ(c) = 0 since fB(b) = c.

We started with b′ + Im(β) = b′ − β(b) + Im(β) as an arbitrary element of Coker(β) and saw that

gB′(b′ − β(b)) = 0, so without loss of generality we can assume gB′(b′) = 0 (just replace b′ with

b′−β(b) as the representation of coset b′ +Im(β)). That is, b′ ∈ Ker(gB′) without loss of generality.

Since the second row is exact, then Im(gA′) = Ker(gB′) and so b′ ∈ Im(gA′). Hence b′ = gA′(a′) for

some a′ ∈ A′. Then

cα(a′ + Im(α)) = gA′ + Im(β) by the definition of cα

= b′ + Im(β),

and so b′ + Im(β) ∈ Im(cα). Since b′ + Im(β) is an arbitrary element of Ker(cβ), then Ker(cβ) ⊂
Im(cα). Hence Im(cα) = Ker(cβ) and the sequence is exact at Coker(β). Therefore, the sequence

Ker(α)
kα→ Ker(β)

kβ→ Ker(γ)
δ−→ Coker(α)

cα→ Coker(β)
cβ→ Coker(γ)

is exact.

Finally, if fA is a monomorphism (“one to one”; in which case the first row of the diagram can

be extended to the left to include “0 →”), then kα = fA|Ker(α) is a monomorphism, as claimed. The

exact sequence of kernels and cokernels can then be extended to the left to include “0 →.” If gB′ is

an epimorphism (“onto”; in which case the second row of the diagram can be extended to the right



Snake Lemma Proof 7

to include “→ 0”) and c′ + Im(γ) ∈ C ′/Im(γ) = Coker(γ), then gB′(b′) = c′ for some b′ ∈ B′. So

cβ(b′ + Im(β)) = gB(b′) + Im(γ) by the definition of cβ

= c′ + Im(γ),

and c′ + Im(γ) ∈ cβ. Since c′ + Im(γ) is an arbitrary element of Coker(γ), then Im(cβ) = Coker(γ)

and cβ is an epimorphism (onto), as claimed. The exact sequence of kernels and cokernels then can

be extended to the right to include “→ 0.”
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