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Section V.1. Field Extensions

Note. In this section, we define extension fields, algebraic extensions, and tran-

scendental extensions. We treat an extension field F as a vector space over the

subfield K. This requires a brief review of the material in Sections IV.1 and IV.2

(though if time is limited, we may try to skip these sections). We start with the

definition of vector space from Section IV.1.

Definition IV.1.1. Let R be a ring. A (left) R-module is an additive abelian

group A together with a function mapping R × A → A (the image of (r, a) being

denoted ra) such that for all r, a ∈ R and a, b ∈ A:

(i) r(a + b) = ra + rb;

(ii) (r + s)a = ra + sa;

(iii) r(sa) = (rs)a.

If R has an identity 1R and

(iv) 1Ra = a for all a ∈ A,

then A is a unitary R-module. If R is a division ring, then a unitary R-module is

called a (left) vector space.

Note. A right R-module and vector space is similarly defined using a function

mapping A×R → A.

Definition V.1.1. A field F is an extension field of field K provided that K is a

subfield of F .
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Note. With R = K (the ring [or field] of “scalars”) and A = F (the additive

abelian group of “vectors”), we see that F is a vector space over K.

Definition. Let field F be an extension field of field K. The dimension of F as a

vector space over K is denoted [F : K]. F is a finite dimensional extension or an

infinite dimensional extension of K according as [F : K] is finite or infinite.

Note. We defined the product of two cardinal numbers in Definition 0.8.3. The

following is a restatement of Theorem IV.2.16 and, if we skipped Chapter IV, we

simply accept this without proof. The case for finite dimensional extensions is

proved in Fraleigh (see Theorem 31.4 of the 7th edition).

Theorem V.1.2. Let F be an extension field of E and E an extension field of K.

Then [F : K] = [F : E][E : K]. Furthermore [F : K] is finite if and only if [F : E]

and [E : K] are finite.

Definition. If field F is an extension field of field E and E is an extension field

of field K (so that K ⊂ E ⊂ F ) then E is an intermediate field of K and F .

For field F and set X ⊂ F , then subfield (respectively, subring) generated by X

is the intersection of all subfields (respectively, subrings) of F that contain X. If

F is an extension field of K and X ⊂ F then the subfield (respectively, subring)

generated by K ∪X is the subfield (respectively, subring) generated by X over K

and is denoted K(X) (or, respectively, in the case of rings, K[X]).
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Definition. If X = {u1, u2, . . . , un} then the subfield K(X) (respectively, subring

K[X]) of F is denoted K(u1, u2, . . . , un) (respectively, K[u1, u2, . . . , un]). The field

K(u1, u2, . . . , un) is a finitely generated extension of K. If X = {u} then K(u) is a

simple extension of K.

Note. The field K(u1, u2, . . . , un) is a finitely generated extension of K but it

may not be a finite dimensional extension over K (see Exercise V.1.2—it uses a

transcendental extension; for example, Q(π)).

Note. In Exercise V.1.4 it is shown that neither K(u1, u2, . . . , un) nor K[u1, u2, . . . , un]

depends on the order of the ui and that K(u1, u2, . . . , un−1)(un) = K(u1, u2, . . . , un)

and K[u1, u2, . . . , un−1][un] = K[u1, u2, . . . , un].
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Theorem V.1.3. If F is an extension field of a field K, u, ui ∈ F , and X ⊂ F ,

then

(i) the subring K[u] consists of all elements of the form f(u) where f is a poly-

nomial with coefficients in K (that is, f ∈ K[x]);

(ii) the subring K[u1, u2, . . . , un] consists of all elements of the form g(u1, u2, . . . , um),

where g is a polynomial in m indeterminates with coefficients in K (that is,

g ∈ K[x1, x2, . . . , xm]);

(iii) the subring K[X] consists of all elements of the form h(u1, u2, . . . , un) where

each ui ∈ X, n ∈ N, and h is a polynomial in n indeterminates with coefficients

in K (that is, n ∈ N and h ∈ K[x1, x2, . . . , xn]);

(iv) the subfield K(u) consists of all elements of the form f(u)/g(u) = f(u)g(u)−1,

where f, g ∈ K[x] and g(u) 6= 0;

(v) the subfield K(u1, u2, . . . , um) consists of all elements of the form

h(u1, u2, . . . , um)/k(u1, u2, . . . , um) = h(u1, u2, . . . , um)k(u1, u2, . . . , um)−1

where h, k ∈ K[x1, x2, . . . , xm] and k(u1, u2, . . . , um) 6= 0;

(vi) the subfield K(X) consists of all elements of the form

f(u1, u2, . . . , un)/g(u1, u2, . . . , un) = f(u1, u2, . . . , un)g(u1, u2, . . . , un)
−1

where n ∈ N, f, g ∈ K[x1, x2, . . . , xn], u1, u2, . . . , un ∈ X, and g(u1, u2, . . . , un) 6=

0.

(vii) For each v ∈ K(X) (respectively, K[X]) there is a finite subset X ′ of X such

that v ∈ K(X ′) (respectively, K[X ′]).
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Definition. If L and M are subfields of field F , the composite of L and M in F ,

denoted LM , is the subfield generated by the set X = L ∪M .

Note. Several of the exercises deal with composites of fields (Exercises V.1.5,

V.1.20, and V.1.21).

Note. We now distinguish between two types of elements of an extension field.

This is fundamental to all that follows.

Definition V.1.4. Let F be an extension field of K. An element u ∈ F is algebraic

over K if u is a root of some nonzero polynomial f ∈ K[x]. If u is not a root of

any nonzero f ∈ K[x] then u is transcendental over K. F is an algebraic extension

of K if every element of F is algebraic over K. F is a transcendental extension if

at least one element of F is transcendental over K.

Example V.1.A. The most common example of an algebraic extension field is

Q(
√

2) = {a +
√

2b | a, b ∈ Q}.

Another useful algebraic extension field is

R(i) = {a + ib | a, b ∈ R} ∼= C.
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Note. The list of known transcendental real numbers is brief, but includes π

and e. A readable account of transcendental numbers is Making Transcendence

Transparent: An Intuitive Approach to Classical Transcendental Number Theory

by E. Burger and R. Tubbs, Springer (2004).

Example. If K is a field, then the polynomial ring K[x1, . . . , xn] is an integral

domain by Theorem III.5.3. The field of quotients of K[x1, . . . , xn] is denoted

K(x1, . . . , xn). The elements of field K(x1, . . . , xn) consist of all fractions f/g

where f, g ∈ K[x1, . . . , xn] and g 6= 0 (by Theorem III.4.3—though we may have

skipped Section III.4). The field K(x1, . . . , xn) is the field of rational functions

in indeterminates x1, x2, . . . , xn over K In Exercise V.1.6, it is shown that every

element of K(x1, . . . , xn) not in K itself is transcendental over K.

Note. In the next two theorems, we classify simple extensions (first, extending by

a transcendental and second extending by an algebraic).

Theorem V.1.5. If F is an extension field of K and u ∈ F is transcendental over

K, then there is an isomorphism of fields K(u) ∼= K(x) which is the identity when

restricted to K.
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Theorem V.1.6. If F is an extension field of K and u ∈ F is algebraic over K,

then

(i) K(u) = K[u];

(ii) K(u) ∼= K[x]/(f) where f ∈ K[x] is an irreducible monic polynomial of degree

n ≥ 1 uniquely determined by the conditions that f(u) = 0 and g(u) = 0

(where g ∈ K[x]) if and only if f divides g;

(iii) [K(u) : K] = n;

(iv) {1K , u, u2, . . . , un−1} is a basis of the vector space K(u) over K;

(v) every element of K(u) can be written uniquely in the form a0 + a1u + a2u
2 +

· · ·+ an−1u
n−1 where each ai ∈ K.

Note. Theorem V.I.6 tells us what elements of the algebraic extension K(u) of K

“look like.” That is, there exists a (fixed) n ∈ N such that every element of K(u)

is of the form a0 + a1u + · · · + an−1u
n−1 for some ai ∈ K. Notice that Theorem

V.1.5 and Theorem V.1.3(iv) tell us what elements of the transcendental extension

K(u) of K “look like”:

a0 + a1u + · · ·+ anu
n

b0 + b1u + · · ·+ bmum
where ai, bi ∈ K and b0 + b1u + · · ·+ bmum 6= 0.

Definition V.1.7. Let F be an extension field of K and u ∈ F algebraic over

K. The monic irreducible polynomial f of Theorem V.1.6(ii) is the irreducible

polynomial of u. The degree of u over K is deg(f) = [K(u) : K].
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Example. The polynomial x3 − 3x− 1 is irreducible over Q, since by Proposition

III.6.8 the only possible rational roots are ±1, neither of which is a root (we have

also used the Factor Theorem, Theorem III.6.6, here). By the Intermediate Value

Theorem of Calculus 1, there is some real root u. Now x3−3x−1 is the irreducible

polynomial of u, so u has degree 3 over Q and {1, u, u2} is a basis of Q(u) over

Q by Theorem V.1.6(iv). Now u4 + 2u3 + 3 ∈ Q(u) and so must be some linear

combination of 1, u, u2. The Division Algorithm (Theorem III.6.2) gives in Q[x]:

x4 + 2x3 + 3 = (x + 2)(x3 − 3x− 1) + (3x2 + 7x + 5)

whence

u4 + 2u3 + 3 = (u + 2)(u3 − 3u− 1) + (3u2 + 7u + 5)

= (u + 2)(0) + (3u2 + 7u + 5) = 3u2 + 7u + 5.

In the notation of linear algebra, we would say that u4 + 2u3 + 3 has coordinate

representation [5, 7, 3]B with respect to the ordered bases B = {1, u, u2}.

Note. Suppose we have the fields K < E and L < F and σ : K → L is an

isomorphism between E and F . The following result addresses this for simple

extensions.

Theorem V.1.8. Let σ : K → L be an isomorphism of fields, u an element of

some extension field of K and v an element of some extension field of L. Assume

either:

(i) u is transcendental over K and v is transcendental over L; or

(ii) u is a root of an irreducible polynomial f ∈ K[x] and v is a root of σf ∈ L[x].

Then σ extends to an isomorphism of fields K(u) ∼= L(v) which maps u onto v.
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Corollary V.1.9. Let E and F each be extension fields of K and let u ∈ E

and v ∈ F be algebraic over K. Then u and v are roots of the same irreducible

polynomial f ∈ K[x] if and only if there is an isomorphism of fields K(u) ∼= K(v)

which sends u onto v and it is the identity on K.

Note. Fraleigh (in his Definition 48.1) calls two roots of the same irreducible

polynomial over K, “conjugates.” This terminology is inspired by the fact that

roots of irreducible second degree polynomials over R come in complex conjugates

pairs.

Note. So far we have dealt with a field K and some element u which is algebraic

over K and is an element of some (mysterious) given extension field F . The follow-

ing result shows that for any polynomial f ∈ K[x] there exists some extension field

F such that F contains a root of f . This is a step towards the Fundamental Theo-

rem of Algebra in that we now know of the existence of an extension field containing

a root of a given polynomial. In Section V.3 we will show that every field has an

algebraic closure (that is, an extension field that contains all roots of all polyno-

mials over both the original field and the extension field)—see Theorem V.3.6. Of

course, the Fundamental Theorem of Algebra states that C is algebraically closed

(as we’ll see in the appendix to Section V.3). The next result is commonly called

Kronecker’s Theorem (see Fraleigh’s Theorem 29.3—Fraleigh makes this result the

“basic goal” of his book).
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Theorem V.1.10. Kronecker’s Theorem.

If K is a field and f ∈ K[x] a polynomial of degree n, then there exists a simple

extension field F = K(u) of K such that:

(i) u ∈ F is a root of f ;

(ii) [K(u) : K] ≤ n, with equality holding if and only if f is irreducible in K[x];

(iii) if f is irreducible in K[x], then K(u) is unique up to an isomorphism which

is the identity on K.

Note. In the proof of Kronecker’s Theorem part (i), one might be interested in how

Kronecker find the root u. Notice that is is dealt with very symbolically; namely,

u = x + (f) in K[x]/(f) = F .

Note. The “Kronecker” of “Kronecker’s Theorem” is Leopold Kronecker (1823–

1891) who was born in Poland and did most of his work in Germany.
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He is well-known for the quote “God made the integers; all else is the work of

man.” Kronecker’s philosophical view of math is that every object of mathematics

should be constructible and constructed in a finite number of steps. In 1882 he

published “Foundations of an Arithmetic Theory of Algebraic Numbers” in which

he introduced the idea of an extension field created by adjoining a single element

(a root of a polynomial) to the field of rational numbers. Quoting from A History

of Abstract Algebra by Israel Kleiner: “Kronecker rejected irrational numbers as

bona fide entities since they involve the mathematical infinite. For example, the

algebraic number field Q(
√

2) was defined by Kronecker as the quotient field of the

polynomial ring Q[x] relative to the ideal generated by x2 − 2, though he would

have put it in terms of congruences rather than quotient rings. These ideas contain

the germ of what came to be known as Kronecker’s Theorem, namely that every

polynomial over a field has a root in some extension field.” Kronecker’s rival in this

“finitest” view was Richard Dedekind (1831–1916). Dedekind used an axiomatic

approach, including an acceptance of the axiomatized infinite. Whereas Kronecker

would start with the natural numbers, build the integers, the rationals, and then

finite extensions of the rationals, Dedekind treats the real numbers as a complete

ordered field from the start. Dedekind’s version of completeness (and hence his

approach to irrationals) is dealt with using “Dedekind cuts.” A Dedekind cut of

R is two nonempty sets A, B ⊂ R such that: a < b for all a ∈ A and b ∈ B,

A ∩ B = ∅, and A ∪ B = R. The claim (the “Axiom of Completeness” for R) is

that either A has a largest element or B has a smallest element. This can be stated

in everyday language as the following. Suppose an airplane taxis down a runway

and takes off. Is there a last point in time the plane is on the ground or a first
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point in time that the plane is off the ground? (The answer: There is a last point

in time the plane is on the ground.) These are the ideas you will address early in

our Analysis 1 (MATH 4217/5217) class.

Note. We now establish some “basic facts” about algebraic field extensions.

Theorem V.1.11. If F is a finite dimensional extension field of K, then F is

finitely generated and algebraic over K.

Theorem V.1.12. If F is an extension field of K and X is a subset of F such

that F = K(X) and every element of X is algebraic over K, then F is an algebraic

extension of K. If X is a finite set, then F is finite dimensional over K.

Theorem V.1.13. If F is an algebraic extension field of E and E is an algebraic

extension field of K, then F is an algebraic extension of K.

Theorem V.1.14. Let F be an extension field of K and E the set of all elements

of F which are algebraic over K. Then E is a subfield of F (which is, of course,

algebraic over K).
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Note. Theorem V.1.14 justifies the claim that the algebraic real numbers, A, are

a field:

A = {r ∈ R | p(r) = 0 for some p ∈ Q[x]}.

Of course, the same can be said for the algebraic complex numbers.
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