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Section V.2.Appendix.

Symmetric Rational Functions

Note. Inspired by the symmetric way in which the coefficients of a polynomial are

related to the zeros of that polynomial, we define symmetric rational functions and

elementary symmetric functions. Some of the results of this appendix are used in

the appendix to Section V.9 in which Abel’s Theorem on the unsolvability of the

quintic is proved.

Note. Let K be a field and let f(x) ∈ K[x] be a polynomial of degree n with

roots −r1,−r2, . . . ,−rn in some extension field F . Then by the Factor Theorem

(Theorem III.6.6), we have that f(x) = a
∏n

i=1(x+ ri) for some a ∈ F . We suppose

a = 1 and then f(x) =
∏n

i=1(x + ri). Multiplying this out to get the coefficients of

the powers of x we have:

f(x) = xn + (r1 + r2 + · · · + rn)
︸ ︷︷ ︸

all roots

xn−1

+ (r1r2 + r1r3 + · · · + rn−1rn)
︸ ︷︷ ︸

all products of pairs of roots

xn−2

+ (r1r2r3 + r1r2r4 + · · · + rn−2rn−1rn)
︸ ︷︷ ︸

all products of triples of roots

xn−3

+ · · ·+ (r1r2 . . . rk + · · · + rn−k+1rn−k+2 · · · rn)
︸ ︷︷ ︸

all products of k-tuples of roots

xn−k
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+ · · · + (r1r2 · · · rn−1 + r1r2 · · · rn−2rn + · · · + r2r3 · · · rn)
︸ ︷︷ ︸

all products of (n − 1)-tuples of roots

x

+ (r1r2 · · · rn)
︸ ︷︷ ︸

product of all n roots

Notice that if we permute the roots (for example, if we interchange r1 and r2) then

the coefficients remain unchanged. Since the permutations of the roots fixes the

coefficients, the coefficients are said to be symmetric expressions of the roots. This

is where permutation groups enter the scene of algebraic solutions of

polynomial equations!!!

Note. In this appendix, we let K be a field, K[x1, x2, . . . , xn] be the ring of

polynomials (an integral domain since K is a field) in n indeterminates, and

K(x1, x2, . . . , xn) the field of quotients of K[x1, x2, . . . , xn] (the elements of this

field are rational functions). By interpreting a polynomial as a rational function

with denominator 1K , we have K[x1, x2, . . . , xn] ⊂ K(x1, x2, . . . , xn). Recall that

we denote the symmetric group on n letters as Sn.

Definition. A rational function ϕ ∈ K(x1, x2, . . . , xn) is symmetric in x1, x2, . . . , xn

over K if for every σ ∈ Sn,

ϕ(x1, x2, . . . , xn) = ϕ(xσ(1), xσ(2), . . . , xσ(n)).
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The elementary symmetric functions in x1, x2, . . . , xn over K are defined to be

f1 =
n∑

i=1

xi

f2 =
∑

1≤i<j≤n

xixj

f3 =
∑

1≤i<j<k≤n

xixjxk

...

fk =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik

...

fn = x1x2 · · ·xn.

Note. If g(y) ∈ K[x1, x2, . . . , xn][y] is g(y) = (y − x1)(y − x2)(y − x3) · · · (y − xn),

then the coefficients of g are

g(y) = yn − f1y
n−1 + f2y

n−2 − · · ·+ (−1)n−1fn−1y + (−1)nfn.

If we permute the xi’s then g(y) remains unchanged showing that the fk actually

are symmetric functions.

Note. The only essential material from this appendix needed in Appendix V.9

is the definition of elementary symmetric functions, the next “Observation,” and

Theorem V.2.18.
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Observation. If σ ∈ Sn then the mapping xi 7→ xσ(i) induces a K-automorphism

(that is, K is fixed by the automorphism elementwise) of the field K(x1, x2, . . . , xn)

(we denote both of these as σ, though the K-automorphism is in AutK(F (x1, x2, . . . , xn))).

With the mapping σ (in Sn) 7→ σ (in AutK(K(x1, x2, . . . , xn)) we have a one to one

group homomorphism (a monomorphism) and whence Sn may be considered as a

subgroup of the Galois group AutK(K(x1, x2, . . . , xn)). Of course, the fixed field E

os Sn in K(x1, x2, . . . , xn) consists precisely of the symmetric functions. By The-

orem V.2.15, Artin’s Theorem, K(x1, x2, . . . , xn) is a Galois extension of E (with

G = Sn, F = K(x1, x2, . . . , xn), and K = E). Since G = Sn is finite, then by

Artin’s Theorem, G is the Galois group of F = K(x1, x2, . . . , xn) over K = E and

(see the proof of Artin’s Theorem)

|G| = |Sn| = n! = [F : K] = [K(x1, x2, . . . , xn) : E];

that is, the dimension of K(x1, x2, . . . , xn) over E is n!.

Note. The following result shows that (informally put) every finite group is the

Galois group of some field extension.

Proposition V.2.16. If G is a finite group, then there exists a Galois field exten-

sion with Galois group isomorphic to G.
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Note. In the remainder of this appendix, K is an arbitrary field, E is the sub-

field of symmetric rational functions in K(x1, x2, . . . , xn), and f1, f2, . . . , fn are the

elementary symmetric function in x1, x2, . . . , xn overK. We have the “tower” of

fields:

K ⊂ K(f1, f2, . . . , fn) ⊂ E ⊂ K(x1, x2, . . . , xn).

Our first goal is to prove that E = K(f1, f2, . . . , fn) (that is, every rational sym-

metric function is in fact a rational function of the elementary symmetric functions

f1mf2, . . . , fn over K).

Lemma V.2.17. Let K be a field, f1, f2, . . . , fn the elementary functions in

x1, x2, . . . , xn over K and k an integer with 1 ≤ k ≤ n − 1. If h1, h2, . . . , hk ∈

K[x1, x2, . . . , xn] are the elementary symmetric functions in x1, x2, . . . , xn, then each

hj can be written as a polynomial over K in f1, f2, . . . , fn and xk+1, xk+2, . . . , xn.

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational func-

tions in K(x1, x2, . . . , xn) and f1, f2, . . . , fn the elementary symmetric functions in

x1, x2, . . . , xn, then E = K(f1, f2, . . . , fn).

Note. We now turn our attention from symmetric rational functions to symmet-

ric polynomial functions and give a result analogous to Theorem V.2.18, but for

polynomials.
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Note. The following preliminary lemma requires two results from Chapter IV

(namely, Theorem IV.2.5 concerning a spanning set and the proof of Theorem

IV.2.16). Since we may have skipped this chapter, we omit the proof of this lemma.

Lemma V.2.19. Let K be a field and E the subfield of all symmetric rational func-

tions in K(x1, x2, . . . , xn). Then the set X = {xi1
1 xi2

2 · · ·xin
n | 0 ≤ ik < k for each k}

is a basis of K(x1, x2, . . . , xn) over E.

Proposition V.2.20. Let K be a field and let f1, f2, . . . , fn be the elementary

symmetric functions in K(x1, x2, . . . , xn).

(i) Every polynomial in K[x1, x2, . . . , xn] can be written uniquely as a linear com-

bination of the n! elements xi1
1 xi2

2 · · ·xin
n (for eac k with 0 ≤ ik < k) with

coefficients in K[f1, f2, . . . , fn];

(ii) every symmetric polynomial in K[x1, x2, . . . , xn] lies in K[f1, f2, . . . , fn].
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