Section V.2. The Fundamental Theorem of Galois Theory (Supplement)

Some Field Extension Observations

Recall. If F is an extension field of field K then F is a vector space over K (see page 231).

Theorem V.1.11. If F is a finite dimensional (vector space) extension field of K, then F is finitely generated and algebraic over K.

Note. We have:

- $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a finitely generated extension of \mathbb{Q} (generated by $X = \{\sqrt{2}, \sqrt{3}\}$ over \mathbb{Q}) and finite dimensional, $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$.

- $\mathbb{Q}(\pi) \cong \mathbb{Q}(x)$ (by Theorem V.1.5) is a finitely generated extension of \mathbb{Q} (with $X = \{\pi\}$; in fact, it’s a simple extension). It is not an algebraic extension (since π is not algebraic) and is not a finite dimensional extension of \mathbb{Q} (since the set $X = \{1, \pi, \pi^2, \pi^3, \ldots\}$ is linearly independent).

- $\mathbb{Q}(\sqrt{2})$ is an algebraic extension, a simple extension, and $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 3$ (by Theorem V.1.6).

- The algebraic real numbers, $\mathbb{A}_\mathbb{R}$, are an algebraic extension of \mathbb{Q}. But $\mathbb{A}_\mathbb{R}$ is not a finitely generated extension (consider the set $\{\sqrt{p} \mid p \in \mathbb{N} \text{ is prime}\}$) nor
a finite dimensional extension of \(\mathbb{Q} \) (the set \(X = \{ \sqrt{p} \mid p \in \mathbb{N} \text{ is prime} \} \) is linearly independent). The same holds for the algebraic complex numbers, \(\mathbb{A}_\mathbb{C} \).

- \(\mathbb{C} = \mathbb{R}(i) \) is a finite dimensional, finitely generated (simple, in fact), algebraic extension of \(\mathbb{R} \).
- \(\mathbb{R} \) is an infinite dimensional, infinitely generated, non algebraic extension of \(\mathbb{Q} \).

Some Galois Extension Observations

Recall. \(F \) is a Galois extension field of field \(K \) if the fixed field of \(\text{Aut}_K(F) \) is \(K \) itself; that is, \(K = (\text{Aut}_k(F))' \) (Definition V.2.4).

Exercise V.2.9. (a) If \(K \) is an infinite field, then \(K(x) \) is Galois over \(K \).

Proof. ASSUME that \(K(x) \) is not Galois over \(K \). Then by the definition of Galois, the fixed field of \(\text{Aut}_K K(x) \) does not equal \(K \), \((\text{Aut}_K K(x))' = E \neq K \). Then we have \(K(x) \supseteq E \supseteq K \) and \(E \neq K \), so by Exercise V.2.6(b), we have that \([K(x) : E] \) is finite. Now \(\text{Aut}_E K(x) = \text{Aut}_K K(x) \) and by Exercise V.2.6(d), since \(K \) is an infinite field, then \(\text{Aut}_K K(x) = \{ (ax + b)/(cx + d) \mid a, b, c, d \in K, ad - bc \neq 0 \} \) is infinite. Therefore \(\text{Aut}_E K(x) = \text{Aut}_K K(x) \) is infinite. But then by Lemma V.2.8 (the “in particular” part) we have \(|\text{Aut}_E K(x)| \leq [K(x) : E] \), a CONTRADICTION. So the assumption that \(K(x) \) is not Galois over \(K \) is false and hence \(K(x) \) is Galois over \(K \).
(b) If K is finite, then $K(x)$ is not Galois over K. HINT: Prove by contradiction. Use Exercise V.2.6(d) to show that $\text{Aut}_K K(x)$ is finite. Use Theorem V.1.5 and Theorem V.1.11 to show that $[K(x) : K]$ is infinite. Use Lemma V.2.9 to get a contradiction.

Proof. ASSUME $K(x)$ is Galois over K. Then the fixed field of $\text{Aut}_K K(x)$ is $(\text{Aut}_K K(x))' = K$. By Exercise V.2.6(d), every element of $\text{Aut}_K K(x)$ is induced by a mapping $x \mapsto (ax + b)/(cx + d)$ where $a, b, c, d \in K$ and $ad - bc \neq 0$. Since K is finite, then there are only a finite number of such mappings and hence

$$\text{Aut}_K K(x) \text{ is finite.} \quad (*)$$

Now x is transcendental over K by Theorem V.1.5, so by the contrapositive of Theorem V.1.11,

$$[K(x) : K] \text{ is infinite.} \quad (**)$$

Let $J = \text{Aut}_K K(x)$ and $H = \{1_{K(x)}\} < \text{Aut}_K K(x) = J$. Then the fixed field of H is $H' = K(x)$ and as assumed above the fixed field of $J = \text{Aut}_K K(x)$ is $J' = K$. By Lemma V.2.9, $[H' : J'] \leq [J : H]$ or $[K(x) : K] \leq [\text{Aut}_K K(x) : \{1_{K(x)}\}]$. But $[\text{Aut}_K K(x) : \{1_{K(x)}\}] = |\text{Aut}_K K(x)|$ is finite by $(*)$ and $[K(x) : K]$ is infinite by $(**)$, a CONTRADICTION. So the assumption that $K(x)$ is Galois over K is false and so $K(x)$ is not Galois over K.

Note. We have:

- $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a Galois extension of \mathbb{Q} and $\text{Aut}_\mathbb{Q}(\mathbb{Q}(\sqrt{2}, \sqrt{3})) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

- $\mathbb{Q}(\pi) \cong \mathbb{Q}(x)$ is Galois over \mathbb{Q} by Exercise V.2.9 (in fact, this holds for any infinite base field K). Notice that $\mathbb{Q}(\pi)$ is not an algebraic extension of \mathbb{Q}.

• \(\mathbb{Q}(\sqrt[3]{2}) \) is not a Galois extension of \(\mathbb{Q} \) (see the first example on page 244 or the first example on page 4 of the class notes). The fixed field of \(\text{Aut}_\mathbb{Q}(\mathbb{Q}(\sqrt[3]{2})) \) is \(\mathbb{Q}(\sqrt[3]{2}) \).

• \(\mathbb{C} = \mathbb{R}(i) \) is a Galois extension of \(\mathbb{R} \) and \(\text{Aut}_\mathbb{R}(\mathbb{C}) \cong \mathbb{Z}_2 \).

• \(\mathbb{R} \) is not a Galois extension of \(\mathbb{Q} \) since the fixed field of \(\text{Aut}_\mathbb{Q}(\mathbb{R}) \) is \(\mathbb{R} \) by Exercise V.2.2.

• The algebraic complex numbers \(\mathbb{Q}_\mathbb{C} \) are Galois over \(\mathbb{Q} \). (If \(u \in \mathbb{A}_\mathbb{C} \) and \(u \notin \mathbb{Q} \) then \(p(u) = 0 \) for some \(p \in \mathbb{Q}[x] \) where \(p \) is irreducible and \(\deg(p) \geq 2 \). Since \(\deg(p) \geq 2 \), then there is \(v \in \mathbb{A}_\mathbb{C} \) where \(p(v) = 0 \) and \(v \neq u \). By Corollary V.1.9, there is \(\sigma \in \text{Aut}_\mathbb{Q}(\mathbb{A}_\mathbb{C}) \) where \(\sigma(u) = v \) where \(p(v) = 0 \) and \(v \neq u \).)

• The algebraic real numbers, \(\mathbb{A}_\mathbb{R} \), are no Galois over \(\mathbb{Q} \). For \(\sqrt[3]{3} \in \mathbb{A}_\mathbb{R} \) the same argument given for \(\mathbb{Q}(\sqrt[3]{2}) \) shows that \(\sqrt[3]{2} \) must be fixed by all \(\sigma \in \text{Aut}_\mathbb{Q}(\mathbb{A}_\mathbb{R}) \) and so the fixed field of \(\text{Aut}_\mathbb{Q}(\mathbb{A}_\mathbb{R}) \) is not \(\mathbb{Q} \).

Revised: 4/9/2016