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Section V.2. The Fundamental Theorem

(of Galois Theory)

Note. In this section, we define the “Galois group” of an arbitrary field exten-

sion. We prove (after several preliminary results) the Fundamental Theorem of

Galois Theory. The Fundamental Theorem allows us to translate problems involv-

ing fields, polynomials, and extensions into group theoretical terms (again, showing

the centrality of groups in modern algebra). Quoting Hungerford: “It was Galois’

remarkable discovery that many questions about fields (especially about the roots of

polynomials over a field) are in fact equivalent to certain group-theoretic questions

in the automorphism group of the field.”

Definition. Let F be a field. Let Aut(F ) denote the set of all field automorphisms

mapping F → F . Aut(F ) is a group under function composition (by Exercise V.2.1)

called the automorphism group of F .

Definition/Definition IV.1.2. Let A and B be modules over a ring R. A

function f : A → B is an R-module homomorphism provided that for all a, c ∈ A

and r ∈ R:

f(a + c) = f(a) + f(c) and f(ra) = rf(a).

(Recall that a vector space is an R-module where R is a division ring with unity

1R such that 1Ra = a for all a ∈ A.)
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Note. Let E and F be extension fields of K. If σ : E → F is a nonzero homo-

morphism of fields, then σ(1E) = 1F by Exercise III.1.15. If σ is also a K-module

homomorphism then for each k ∈ K we have

σ(k) = σ(k1E) = kσ(1E) = k1E = k

(that is, σ fixes the elements of K). Conversely, if a homomorphism of fields

σ : E → F fixes K elementwise then σ is nonzero and for any u ∈ E

σ(ku) = σ(k)σ(u) = kσ(u)

and so σ is a K-module homomorphism.

Definition V.2.1. Let E and F be extension fields of a field K. A nonzero

map σ : E → F which is both a field and a K-module homomorphism is a K-

homomorphism. Similarly if a field automorphism σ ∈ Aut(F ) is a K-homomorphism

(meaning that σ fixes K elementwise as noted above), then σ is a K-automorphism

of F . The group of all K-automorphisms of F is the Galois group of F over K,

denoted AutK(F ).

Note. We can omit all this “K-module” talk by simply defining AutK(F ) to be

the set of all automorphisms of F which fix subfield K. This is how we are able to

skip Chapter IV with little effect (and this is how Fraleigh deals with Galois theory

without ever defining a module).
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Example. Let K be any field and F = K(x). Then F is an extension field

of K (where we interpret K as the collection of constant rational functions in

K(x)). For each a ∈ K, a 6= 0, define σa : F → F given by f(x)/g(x) 7→
f(ax)/g(ax). Then σa certainly fixes K. σa is a homomorphism by Corollary

III.5.6. σa is onto since for any f(x)/g(x) ∈ K(x), we have f(x/a)/g(x/a) ∈ K(x)

and σa((f(x/a)/g(x/a)) = f(x)/g(x). Now σ−1

a
= σa−1 and so σ is one to one

by Theorem 0.3.1(i). So σa is an automorphism of K(x) which fixes K; that is,

σa ∈ AutK(F ) = AutK(K(x)) for all a ∈ K, a 6= 0. Hence if K is infinite then

AutK(F ) = AutK(K(x)) is infinite. Similarly, for each b ∈ K, the map τb : F → F

given by f(x)/g(x) 7→ f(x + b)/g(x + b) is in AutK(F ). If a 6= 1K and b 6= 0 then

σaτb 6= τbσa since

σaτb(x) = σa(x+ b) = (ax)+ b = ax+ b and τbσa(x) = τb(ax) = a(x+ b) = ax+ ab.

Therefore AutK(F ) is nonabelian.

Theorem V.2.2. Let F be an extension field of K and K[x]. If u ∈ F is a root

of f and σ ∈ AutK(F ), then σ(u) ∈ F is also a root of f .

Note. If u is algebraic over K and f(u) = 0 for irreducible f ∈ K[x] of degree

u, then by Theorem V.1.6(iv), {1K , u, u2, . . . , un−1} is a basis for K(u). So any

σ ∈ AutK(K(u)) is completely determined by its action on u. We will use this

property to restrict the number of elements of AutK(F ) and to get some idea of

the structure of AutK(F ).



V.2. The Fundamental Theorem (of Galois Theory) 4

Example. If F = K, then AutK(F ) only contains the identity isomorphism.

The converse is false. Consider, for example, u the real root of x3 − 2. Then

Q ⊂ Q(u) ⊂ R (as fields). Then AutQ(Q(u)) consists only of the identity, since by

Theorem V.2.2 the image of u must also be a root of x3−2 but the other two roots

of x3 − 2 are complex and so u must be mapped to itself. Similarly, by Exercise

V.2.2, AutQ(R) contains only the identity.

Example. We now consider AutR(C). We have C = R(i) where i is a root of

x2 +1. By Theorem V.2.2, the only possible image of i by an element of AutR(C) is

either i itself (in which case the automorphism is the identity) or −i. It is easy to

verify that the mapping a+ib 7→ a−ib is an automorphism of C. So |AutR(C)| = 2.

Similarly |AutQ(Q(
√

2)| = 2.

Example. Let F = Q(
√

2,
√

3) = Q(
√

2)(
√

3). A basis of Q(
√

2) over Q is

{1,
√

2} by Theorem V.1.6(iv). Now x2 −3 is irreducible over Q(
√

2), so a basis for

Q(
√

2)(
√

3) over Q(
√

2) is {1,
√

3}. But, as given by Theorem V.1.2, we know that

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3), Q(
√

2)][Q(
√

2), Q] = 4. In the proof of Theorem

V.1.2—really, the proof of Theorem IV.2.16—it is shown that for fields J ⊂ K ⊂ F

with basis A of K over J and basis B of F over K, we have a basis of F over J of

AB = {ab | a ∈ A, b ∈ B}. So the four elements of a basis of Q(
√

2,
√

3) over Q is

{1,
√

2,
√

3,
√

6}. For more details, see Fraleigh’s proof of his Theorem 31.4 on page

284 of the 7th edition of A First Course in Abstract Algebra. Next, by Theorem

V.2.2, for σ ∈ AutQ(Q(
√

2,
√

3)) we must have σ(1) = 1, σ(
√

2) ∈ {−
√

2,
√

2}, and

σ(
√

3) ∈ {−
√

3,
√

3}; notice that the behavior of σ on
√

2 and
√

3 determines its

behavior on
√

6. Therefore AutQ(Q(
√

2,
√

3)) consists of four Q-automorphisms of

F = Q(
√

2,
√

3). “It is readily verified that” AutQ(F ) ∼= Z2 ⊕ Z2.
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Note. The plan for Galois theory is to create a chain of extension fields (alge-

braic extensions, in practice) and to create a corresponding chain of automorphism

groups. The first step in this direction is the following.

Theorem V.2.3. Let F be an extension field of K, E an intermediate field and

H a subgroup of AutK(F ). Then

(i) H ′ = {v ∈ F | σ(v) = v for all σ ∈ H} is an intermediate field of the extension;

(ii) E ′ = {σ ∈ AutK(F ) | σ(u) = u for all u ∈ E} = AutE(F ) is a subgroup of

AutK(F ).

Definition. Let F be an extension field of K and H a subgroup of AutK(F ). The

field H ′ = {v ∈ F | σ(v) = v for all σ ∈ H} is the fixed field of H in F . We use the

prime notation to indicate fixed fields AND to indicate a Galois group AutK(F ):

AutK(F ) = K ′ (notice that F ′ = AutF (F ) = 1, the trivial group consisting only of

the identity permutation is called the identity group).

Definition V.2.4. Let F be an extension field of K such that the fixed field of the

Galois group AutK(F ) is K itself (and nothing else). Then F is a Galois extension

of K, and F is said to be Galois over K.

Note. It follows from the definition that F is Galois over K if and only if for any

u ∈ F \ K there is some σ ∈ AutK(F ) such that σ(u) 6= u.
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Example. If d ∈ Q and d ≥ 0, then Q(
√

d) is Galois over Q (Exercise V.2.5(a)).

C is Galois over R (Exercise V.2.5(b)). In Exercise V.2.2 it is shown that AutQ(R)

is the identity group. So AutQ(R) has fixed field R and hence R is not Galois over

Q.

Definition. If F is an extension field of K, and L,M are intermediate fields with

K ⊂ L ⊂ M ⊂ F then the dimension [M : L] is the relative dimension of L and

M . If H, J are subgroups of AutK(F ) with H < J then the index [J : H] (the

number of cosets of H in J) is the relative index of H and J .

Note. We now have the equipment to state the Fundamental Theorem of Galois

Theory. However, we need several preliminary results before we have the equipment

to prove it.

Theorem V.2.5. The Fundamental Theorem of Galois Theory.

If F is a finite dimensional Galois extension of K, then there is a one to one

correspondence between the set of all intermediate fields of the extension and the

set of all subgroups of the Galois group AutK(F ) (given by E 7→ E ′ = AutE(F ))

such that:

(i) the relative dimension of two intermediate fields is equal to the relative index

of the corresponding subgroups; in particular, AutK(F ) has order [F : K];

(ii) F is Galois over every intermediate field E, but E is Galois over K if and only

if the corresponding subgroup E ′ = AutE(F ) is normal in G = AutK(F ); in

this case G/E ′ is (isomorphic to) the Galois group AutK(E) of E over K.
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Note. The one to one correspondence—the “Galois correspondence”—assigns to

each intermediate field E (that is, K ⊂ E ⊂ F ) the Galois group E ′ = AutE(F )

AND assigns to each subgroup H < G = AutK(F ) the fixed field H ′. These

assignments of fields to groups and groups to fields are inverses of each other.

Diagramatically we have:

Automorphism Fixed

Field Group Group Field

F 7−→ 1 = AutF (F ) 1 7−→ F

∪ ∧ ∧ ∪
M 7−→ M ′ = AutM(F ) H 7−→ H ′

∪ ∧ ∧ ∪
L 7−→ L′ = AutL(F ) J 7−→ J ′

∪ ∧ ∧ ∪
K 7−→ K ′ = G = AutK(F ) G = AutK(F ) 7−→ K

The goal is to establish these mappings as inverses of each other (that is, to jus-

tify the one to one correspondence claims), as well as the relative dimension and

normality claims of the Fundamental Theorem.

Lemma V.2.6. Let F be an extension field of K with intermediate fields L and

M (say K ⊂ L ⊂ M ⊂ F ). Let H and J be subgroups of G = AutK(F ). Then:

(i) F ′ = 1 (the identity group) and K ′ = G;

(i′) 1′ = F ;

(ii) L ⊂ M implies M ′ < L′;
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(ii′) H < J implies J ′ ⊂ H ′;

(iii) L ⊂ L′′ and H < H ′′ (where L′′ = (L′)′ and H ′′ = (H ′)′);

(iv) L′ = L′′′ and H ′ = H ′′′.

Note. It is possible in Lemma V.2.6(iii) for L to be a proper subset of L′′. For

example, in Exercise V.2.2 we have AutQ(R) is the identity group. With L = Q,

we have L′ = AutQ(R) = 1 (the identity group on R) and so the fixed field of L′ is

L′′ = R. Also, H may be a proper subgroup of H ′′ in Lemma V.2.6(iii).

Note. By the definition of Galois extension, in terms of the prime notation, we

have that F is Galois over K if and only if G′ = (AutK(F ))′. We always have

K ′ = AutK(F ) = G (by definition of K ′), so F is Galois over K if and only if

K = G′ = K ′′.

Definition. Let F be an extension field of K. Let X be either (i) an intermediate

field, K ⊂ X ⊂ F , or (ii) a subgroup of the Galois group, X < G = AutK(F ).

Then X is closed if X = X ′′.

Note. Subfield K of F is Galois over K if and only if K is closed.

Theorem V.2.7. If F is an extension field of K, then there is a one to one

correspondence between the closed intermediate fields of the extension and the

closed subgroups of the Galois group, given by E 7→ E ′ = AutE(F ).
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Note. Theorem V.2.7 only deals with closed fields and groups. This will be useful

once we prove Lemma V.2.10. We now turn our attention to dimensions.

Lemma V.2.8. Let F be an extension field of K and L,M intermediate fields

with L ⊂ M . If M : L is finite, then [L′ : M ′] ≤ [M : L]. In particular, if [F : K]

is finite, then |AutK(F )| ≤ [F : K].

Lemma V.2.9. Let F be an extension field of K and let H, J be subgroups of the

Galois group AutK(F ) with H < J . If [J : H] is finite, then [H ′ : J ′] ≤ [J : H].

Lemma V.2.10. Let F be an extension field of K,L and M intermediate fields

with L ⊂ M , and H, J subgroups of the Galois group AutK(F ) with H < J .

(i) If L is closed and [M : L] finite, then M is closed and [L′ : M ′] = [M : L];

(ii) if H is closed and [J : H] finite, then J is closed and [H ′ : J ′] = [J : H];

(iii) if F is a finite dimensional Galois extension of K, then all intermediate fields

and and all subgroups of the Galois group are closed and AutK(F ) has order

[F : K].

Note. We now turn our attention to the intermediate fields. To prove the Funda-

mental Theorem, we now focus our interest on when an intermediate fields has a

corresponding group which is normal in the Galois group AutK(F ).
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Definition. Let K ⊂ E ⊂ F be fields. Intermediate field E is stable (relative to

K and F ) if every σ ∈ AutK(F ) maps E into itself. (Notice that σ|E ∈ AutK(E).)

Note. We may have σ ∈ AutK(F ) mapping E into itself (even onto E), but E

may not be fixed pointwise by σ, so we are not saying that (AutK(F ))′ = E.

Lemma V.2.11. Let F be an extension field of K.

(i) If E is a stable intermediate field of the extension, then E ′ = AutE(F ) is a

normal subgroup of the Galois group AutK(F );

(ii) if H is a normal subgroup of AutK(F ), then the fixed field H ′ of H is a stable

intermediate field of the extension.

Lemma V.2.12. If F is a Galois extension field of K and E is a stable intermediate

field of the extension, then E is Galois over K.

Lemma V.2.13. If F is an extension field of K and E is an intermediate field of

the extension such that E is algebraic and Galois over K, then E is stable (relative

to F and K).

Definition. If K ⊂ E ⊂ F be fields. Automorphism τ ∈ AutK(E) is extendible to

F if there exists σ ∈ AutK(F ) such that the restriction of σ to E is τ , σ|E = τ .
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Note. The automorphism in AutK(E) which are extendible to F form a sub-

group of AutK(E). Recall that if E is stable, then E ′ = AutE(F ) is a normal

subgroup of AutK(F ) by Lemma V.2.11(i). Consequently, the quotient group

AutK(F )/AutE(F ) is defined.

Lemma V.2.14. Let F be an extension field of K and let E be a stable in-

termediate field of the extension. Then the quotient group AutK(F )/AutE(F ) is

isomorphic to the group of all automorphisms in AutK(E) that are extendible to

F .

Note. Now we have the equipment to prove the Fundamental Theorem.

Theorem V.2.15. (Artin.)

Let F be a field, G a group of automorphisms of F , and K the fixed field of G in

F . Then F is Galois over K. If G is finite, then F is a finite dimensional Galois

extension of K with Galois group G.

Note. Hungerford follows an approach to Galois theory originally due to Emil

Artin. Artin’s classical treatment appears in a 68 page work, Galois Theory in

the Notre Dame Mathematical Lectures, Number 2 (1942). Dover Publications has

the second (1944) edition of Artin’s work in print and available today. You can

likely also find a PDF copy online. For example, Project Euclid has an online PDF

available at (accessed 3/9/2015):
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http://projecteuclid.org/euclid.ndml/1175197041#toc

This version (and the Dover version) includes a section on applications by Arthur

Milgram. Fraleigh follows Artin’s approach to Galois theory in his 7th edition (see

the comment on page 419 in the Historical Note). Hungerford also follows Artin’s

development, but as slightly modified by Irving Kaplansky in his 1969 Fields and

Rings in the Chicago Lectures in Mathematics. A second (1972) edition is still in

print (and you might find an online PDF copy of this as well); the 78 page Part I

contains the results on Galois theory.

Emil Artin Irving Kaplansky

(Images from the The MacTutor History of Mathematics Archive.)

Note. In the early 19th century, while exploring algebraic solutions of polynomial

equations (that is, while looking for a quadratic-equation-type solution to a general

nth degree polynomial equation), group theoretic ideas were introduced by Niels

Henrik Abel (1802–1829) and Evaristé Galois (1811–1832). Abel proves that there

is no algebraic way to solve (in general) a 5th or higher degree polynomial equation
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(this is Proposition V.9.8 in Hungerford). However, some 5th degree polynomial

equations can be algebraically solved; for example, the equation x5 − x3 = 0 has

solutions x = 0, x = −1, and x = 1. What Abel did not do, was to determine which

equations are algebraically solvable and which are not. This was accomplished by

Galois. In the opinion of your humble instructor, the real fundamental theorem of

Galois’ is given in Hungerford’s Corollary V.9.7:

Let F be a field of characteristic 0 and let f ∈ F [x]. Then

the equation f(x) = 0 is solvable by radicals if and only if

the Galois group of f is solvable.

In developing his ideas, Galois introduced the ideas of “substitution groups” (special

cases of symmetry groups), normal subgroups, simple groups, and group isomor-

phisms. Unfortunately, Galois did not have time to publish his results because he

died at the age of 20 in a pistol duel. Joseph Liouville (1809–1882) published part of

Galois’ work in 1846, though the importance of this work was not widely recognized

at the time. In 1870, Camille Jordan (1838–1922) published Traité des substitu-

tions et des équations algébriques in which Galois’ theory of equations was presented

and widely circulated. In fact, in Jordan’s book he refers to commutative groups as

“abelian,” a term which is still in use. For additional information on Evaristé Ga-

lois, see http://faculty.etsu.edu/gardnerr/Galois/Galois200.htm and my

YouTube video on Galois at https://www.youtube.com/watch?v=64ZDFglF5eM

(accessed 3/3/2015).
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Evaristé Galois (1811–1832)

This note is based in part on The MacTutor History of Mathematics Archive’s The

Development of Group Theory webpage at:

http://www-history.mcs.st-andrews.ac.uk/HistTopics/

Development group theory.html

and Chapter 31, “Galois Theory,” of Mathematical Thought from Ancient to Mod-

ern Times, Volume 2, by Morris Kline, Oxford University Press (1972), 752–771.
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