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Section V.3.Appendix. The Fundamental

Theorem of Algebra

Note. The Fundamental Theorem of Algebra states that the field of complex

numbers, C, is algebraically closed. If you like, it states that any polynomial of

degree n with complex coefficients has n complex roots (counting multiplicity).

You would be right to expect that we are now in a position to use the material we

have developed to prove the Fundamental Theorem of Algebra. Surprisingly, the

algebraic equipment we have developed is not sufficient for us to give a complete

proof!

Note. Every known proof of the Fundamental Theorem of Algebra depends on

some result(s) from analysis. We shall give a proof which is algebraic, except for

the following two results from analysis:

(A) Every positive real number has a real positive square root.

(B) Every polynomial in R[x] of odd degree has a root in R (that is, every irre-

ducible polynomial in R[x] of degree greater than one has even degree).

Both results actually follow from the Axiom of Completeness of the real numbers.
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Note. You will recall that the real numbers are a complete ordered field. You are

very familiar with what a field is at this stage! An ordering of a field F is a subset

P of F (called the positive subset) such that (i) P is closed under addition, (ii)

P is closed under multiplication, and (iii) for any a ∈ F then exactly one of the

following holds: a ∈ P , −a ∈ P , or a = 0 (property (iii) is The Law of Trichotomy).

An ordering on R is given by set P = {x ∈ R | x > 0}. We use P to define “<” on

R by defining a < b to mean b−a ∈ P . Interestingly, one can prove that there is no

ordering on the field C. The Axiom of Completeness states that every set of real

numbers with an upper bound has a least upper bound. To illustrate this, consider

the subset SQ = {x ∈ Q | x2 < 2} of field Q. Set SQ has an upper bound in Q,

say 2, but it has no least upper bound in Q. So field Q is not complete (though

it is an ordered field). However, set SR = {x ∈ R | x2 < 2} has an upper bound

in R, say 2 again, and therefore by the Axiom of Completeness must have a least

upper bound in R. The least upper bound is
√

2 (in fact, this is the definition of
√

2 as a real number). Result (A) follows similarly and the real positive square

root of positive p ∈ R is the least upper bound of {x ∈ R | x2 < p}. Result (B)

follows from the Intermediate Value Theorem which states (for our purposes) that

a continuous function which is positive at real value a and negative at real value b,

must be 0 for some real value between a and b (the Intermediate Value Theorem

also follows from the Axiom of Completeness).

Note. The real numbers are defined as a complete ordered field. However, it can

be shown that there is only one complete ordered field (up to isomorphism).



V.3.Appendix. The Fundamental Theorem of Algebra 3

Note. Notes are posted online dealing with many of these ideas. Here are some

references:

1. The real numbers as an ordered field:

http://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf

(notes from Analysis 1 [MATH 4217/5217]).

2. The Axiom of Completeness:

http://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf

(notes from Analysis 1 [MATH 4217/5217]).

3. The Intermediate Value Theorem:

http://faculty.etsu.edu/gardnerr/4217/notes/4-1.pdf

(notes from Analysis 1 [MATH 4217/5217]; see Corollary 4-9).

4. The complex number cannot be ordered:

http://faculty.etsu.edu/gardnerr/5510/Ordering-C.pdf

(notes from Complex Analysis 1 [MATH 5510]).

5. There is only one complete ordered field (that is, the real numbers are unique,

up to isomorphism): See Which Numbers are Real? by Micael Henle, Wash-

ington, DC: Mathematical Association of America, Inc. (2012) (see Theorem

2.3.3 on page 48). Also see Chapter 29 “Uniqueness of the Real Numbers” of

Michael Spivak’s Calculus, 2nd Edition, Wilmington, DE: Publish or Perish,

Inc. (1980).
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Note. In the early study of equations, in particular by Niccoló Tartaglia, Gerolamo

Cardano, and Ludovico Ferrari (circa 1540), it was noticed that a cubic equation

always has three roots and a quartic equation always has four roots if we allow the

use of complex numbers. In fact, the study of polynomial equations were inspiration

for the acceptance of both negative and complex numbers as numbers. For more

details, see my historical motivation for the undergraduate modern algebra class:

http://faculty.etsu.edu/gardnerr/4127/notes/Why-am-I-here.pdf. The first

to claim that an n degree polynomial equation must have n roots was Albert Girard

in his 1629 L’invention en algèbre. However, a clear understanding of the reality

of this claim was delayed by the lack of knowledge about complex numbers. Jean

Le Rond D’Alembert made the first serious attempt at proving the Fundamental

Theorem of Algebra in 1746. However, a lack of knowledge about compactness

and completeness resulted in weaknesses in D’Alembert’s “proof.” Leonhard Euler

proved that every real polynomial of degree n, where n ≤ 6, has exactly n com-

plex roots. Unsuccessful attempts to prove the Fundamental Theorem of Algebra

include: Euler in 1749, Joseph-Louis Lagrange in 1772, and Pierre-Simon Laplace

in 1795. Carl Friederich Gauss is usually credited with the first correct proof of the

Fundamental Theorem. In his doctoral thesis in 1799 he gave a proof which today

would be called “topological,” but also by today’s standards might be accepted as

completely rigorous! Gauss published a second proof in 1816 which is “complete

and correct.” Gauss gave a third proof (again topological) in 1816. Of some im-

portance is a proof published by Jean Robert Argand in 1814; Argand introduced

a geometric interpretation of complex numbers as the complex plane which we use

today. In 1849 Gauss gave the first proof that a polynomial equation of degree n
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with complex coefficients has n complex roots. This brief historical description is

based on (accessed 2/26/2015):

http://www-history.mcs.st-and.ac.uk/HistTopics/

Fund theorem of algebra.html

A more detailed historical survey is given by Daniel Velleman of Amherst College

in “The Fundamental Theorem of Algebra: A Visual Approach” available online

at (accessed 2/26/2015):

http://www.cs.amherst.edu/∼djv/FTAp.pdf

My supplement on the history of the Fundamental Theorem is at (accessed 3/4/2015):

http://faculty.etsu.edu/gardnerr/5410/notes/FTA-history.pdf

Also see the PowerPoint presentation of the history which includes an intuitive

argument for the validity of the F.T.A. (accessed 4/10/2015):

http://faculty.etsu.edu/gardnerr/5410/notes/FTA-history.pptx

Note. We need two more preliminary lemmas before proving the Fundamental

Theorem. We include proofs in these notes.

Lemma V.3.17. If F is a finite dimensional separable extension of an infinite field

K, then F = K(u) for some u ∈ F .

Proof. Since F is a separable extension of K, then it is an algebraic extension

and so by Theorem V.3.16(iii) there is a Galois extension F1 of K that contains
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F (here, K ⊂ F ⊂ F1). Since we hypothesize [F : K] is finite then by Theorem

V.3.16(iv) we have that [F1 : K] is finite. By the Fundamental Theorem of Galois

Theory (Theorem V.2.5(i)) AutK(F1) is finite (since |AutK(F1)| = [F1 : K]) and,

since there is a one-to-one correspondence between the set of intermediate fields

of the extension and the set of all subgroups of AutK(F1) (by the Fundamental

Theorem) with |AutK(Fi)| = [Fi : K] for each intermediate field Fi, then there are

only finitely many intermediate fields between K and F1. Therefore, there can be

only a finite number of intermediate fields in the extension of K by F .

Since [F : K] is finite, we can choose u ∈ F such that [K(u) : K] is maximal.

ASSUME K(u) 6= F . Then there exists v ∈ F \ K(u). Consider all (simple

extension) intermediate fields of the form K(u + av) with a ∈ K. Since K is

an infinite field then there are infinitely many elements of F of the form u + av

where u ∈ F , v ∈ F \ K(u), and a ∈ K. However, there are only finitely many

intermediate fields between K and F . So for some a, b ∈ K with a 6= b we must

have K(u + av) = K(u + bv) (or else we have infinitely many simple extensions

of K intermediate to K and F ). So for this a and b, u + bv ∈ K(u + av) and

(a − b)v = (u + av) − (u + bv) ∈ K(u + av). Since a, b ∈ K and a 6= b, then

(a − b), (a − b)−1 ∈ K and so v = (a − b)−1(a − b)v ∈ K(u + av). Whence av ∈
K(u+av) and u = (u+av)−av ∈ K(u+av). So u ∈ K(u+av) and v /∈ K(u) (by

the choice of v), so K ⊂ K(u) ( K(u+ av) Whence [K(u + av) : K] > [K(u) : K].

But this CONTRADICTS the choice of u such that [K(u) : K] is maximal (for

all simple extensions of K). So the assumption that K(u) 6= F is false and hence

F = K(u).
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Lemma V.3.18. There are no extension fields of dimension 2 over the field of

complex numbers.

Proof. ASSUME F is an extension field of C of dimension 2 (that is, [F : C] = 2).

Then a basis for F over C is of the form {1, u} where u ∈ F \C by Theorem V.1.6(iv)

and F = K(u). In fact, for any u ∈ F \C we have F = K(u) (if u1, u2 ∈ F \C then

a(1)+ b(u1) = u2 for some a, b ∈ K and so b−1(−a)(1)+ b−1(u2) = u1 and {1, u2} is

a basis for K(u1)). By Theorem V.1.6(ii) u must be a root of an irreducible monic

polynomial f ∈ C[x] of degree 2. We next show that no such f can exist.

For each a + bi ∈ C = R(i), we know that a2 + b2 has a real positive square root

be Assumption (A), denoted
√

a2 + b2. Also by Assumption (A) the positive real

numbers (a +
√

a2 + b2)/2 and (−a +
√

a2 + b2)/2 have real positive square roots,

say c and d respectively. Now

(1) (c + di)2 = c2 − d2 + 2cdi = (a +
√

a2 + b2)/2 − (−a +
√

a2 + b2)/2

+2

√

(a +
√

a2 + b2)/2 × (−a +
√

a2 + b2)/2 i = a +
√

−a2 + (a2 + b2) i

= a + |b|i = a + bi if b ≥ 0.

(2) (c − di)2 = c2 − d2 − 2cdi = (a +
√

a2 + b2)/2 − (−a +
√

a2 + b2)/2

−2

√

(a +
√

a2 + b2)/2 × (−a +
√

a2 + b2)/2 i = a −
√

−a2 + (a2 + b2) i

= a − |b|i = a + bi if b ≤ 0.

Hence every element a + bi has a square root in C (of course, (−c − di) and

(−c + di) are also square roots when b ≥ 0 and b ≤ 0, respectively). Consequently,

if f(x) = x2 + sx + t ∈ C[x], then f has roots (−s ±
√

s2 − 4t)/2 in C (by the
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quadratic equation—THANKS CLASSICAL ALGEBRA!), and so f splits over C.

So there are no irreducible monic polynomials of degree 2 in C[x] and as explained

above this CONTRADICTS the assumption of the existence of u ∈ F = C(u)

where u ∈ F \ C. So there is no dimension 2 extension of C.

Theorem V.3.19. The Fundamental Theorem of Algebra.

The field of complex numbers is algebraically closed.

Proof. We need to show that every nonconstant polynomial f ∈ C[x] splits over C.

By Kronecker’s Theorem (Theorem V.1.10) we know that for any u algebraic over

C, there exists extension field C(u) where [C(u) : C] = deg(u, C). So if we prove

that C has no finite dimensional extension except itself, then the result will follow.

Since [C : R] = 2 then every finite dimensional extension field E1 of C is a finite

dimensional extension of R because, by Theorem V.1.2, [E1 : R] = [E1 : C][C : R].

Now every algebraic extension field of a field of characteristic 0 is separable (see the

Remark on page 261 and “Lemma” before Theorem V.3.11 in the notes for Section

V.3) and char(R) = 0, so E1 is a separable extension of R. By Theorem V.3.16(iii),

there exists extension field F of R such that F contains E1 and F is Galois over R

(here, R ⊂ E1 ⊂ F ). By Theorem V.3.16(iv) F is a finite dimensional extension of

R. That is, [F : R] is finite. We need only show that F = C to conclude E1 = C.

The Fundamental Theorem of Galois Theory (Theorem V.2.5(i)) shows that

|AutR(F )| = [F : R] is finite. So AutR(F ) is a finite group of even order (since [C :

R] = 2 divides [F : R]). By the First Sylow Theorem (Theorem II.5.7) AutR(F ) has

a Sylow 2-subgroup H of order 2n where 2n+1 does not divide |AutR(F )| (that is, the
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Sylow 2-subgroup H has odd index [AutR(F ) : H]). By the Fundamental Theorem

(Theorem V.2.5(i)) for E the fixed field of H we have that E has odd dimension

over R since [E : R] = [AutR(F ) : H]. Similar to above, since char(R) = 0 then E

is separable over R and so by Lemma V.3.17 E = R(u) (notice that the fact that

R is infinite is used here). Of course E is algebraic over R. Thus the irreducible

polynomial of u has odd degree [E : R] = [R(u) : R] by Theorem V.1.6(iii). By

Assumption (B), every irreducible polynomial in R[x] of degree greater than one has

even degree, so the degree of the irreducible polynomial in R[x] must be 1. Therefore

u ∈ R and [AutR(F ) : H] = [E : R] = [R : R] = 1. Whence AutR(F ) = H and

|AutR(F )| = |H| = 2n. Consequently the subgroup AutC(F ) of AutR(F ) has order

2m for some m where 0 ≤ m ≤ n.

ASSUME m > 0. Then by the First Sylow Theorem (Theorem II.5.7), AutC(F )

has a subgroup J of index 2 (that is, [AutC(F ) : J ] = 2, or |J | = |AutC(F )|/2). Let

E0 be the fixed field of J . By the Fundamental Theorem of Galois Theory (Theorem

V.2.5(i)) E0 is an extension of C with dimension [E0 : C] = [AutC(F ) : J ] = 2.

But this CONTRADICTS Lemma V.3.18. This contradiction to the assumption

that m > 0 implies that m = 0. So |AutC(F )| = 20 = 1 and by the Fundamental

Theorem of Galois Theory (Theorem V.2.5(i)) we have that [F : C] = [AutC(F ) :

AutF (F )] = [AutC(F ) : {e}] = |AutC(F )| = 1 ([AutC(F ) : {e}] is the number of

cosets of {e} in AutC(F ) and so equals |AutC(F )|). Whence F = C and (since

C ⊂ E1 ⊂ F ) E1 = C. That is, every finite dimensional algebraic extension C

equals C and C is algebraically closed.
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Corollary V.3.20. Every proper algebraic extension field of the field of real

numbers is isomorphic to the field of complex numbers.

Proof. If F is an algebraic extension of R and u ∈ F \R has irreducible polynomial

f ∈ R[x] of degree greater than one, then by the Fundamental Theorem of Algebra

(Theorem V.3.19) f splits over C. If v ∈ C is a root of f then by Corollary V.1.9 the

identity map on R extends to an isomorphism R(u) ∼= R(v) = C. Since [R(v) : R] =

[R(u) : R] > 1 and [C : R] = 2, we must have [C : R] = [C : R(v)][R(v) : R] = 2

by Theorem V.1.2, and so it must be that [R(v) : R] = 2 and [C : R(v)] = 1. So

R(v) = C. Therefore F is an algebraic extension of R(u) (which, in turn, is an

algebraic extension of R). But R(u) ∼= R(v) = C and C is algebraically closed by

the Fundamental Theorem of Algebra (Theorem V.3.19) and by Theorem V.3.3 (or

the definition of “algebraically closed” on page 258) an algebraically closed field

has no algebraic extensions (except itself). Thus it must be that F = R(u) ∼= C.
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Note. In your graduate career, you have several opportunities to see a proof of

the Fundamental Theorem of Algebra. Here are some of them:

1. In Complex Analysis [MATH 5510/5520] where Liouville’s Theorem is used to

give a very brief proof. See

http://faculty.etsu.edu/gardnerr/5510/notes/IV-3.pdf

(Theorems IV.3.4 and IV.3.5). You are likely to see the same proof in our

Complex Variables class [MATH 4337/5337]. In fact, this is the proof which

Fraleigh presents in his A First Course In Abstract Algebra, 7th Edition:

http://faculty.etsu.edu/gardnerr/4127/notes/VI-31.pdf

(see Theorem 31.18).

2. In Complex Analysis [MATH 5510/5520] again where Rouche’s Theorem (based

on the argument principle) is used:

http://faculty.etsu.edu/gardnerr/5510/notes/V-3.pdf

(see Theorem V.3.8 and page 4).

3. In Introduction to Topology [MATH 4357/5357] where path homotopies and

fundamental groups of a surface are used:

http://faculty.etsu.edu/gardnerr/5210/notes/Munkres-56.pdf.
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Note. There are no purely algebraic proofs of the Fundamental Theorem of Algebra

[A History of Abstract Algebra, Israel Kleiner, Birkhäuser (2007), page 12]. There

are proofs which are mostly algebraic, but which borrow result(s) from analysis

(such as the proof presented by Hungerford). However, if we are going to use a result

from analysis, the easiest approach is to use Liouville’s Theorem from complex

analysis. This leads us to a philosophical question concerning the legitimacy of the

title “Fundamental Theorem of Algebra” for this result! If seems more appropriate

to refer to it as “Liouville’s Corollary”! Polynomials with complex coefficients are

best considered as special analytic functions (an analytic function is one with a

power series representation) and are best treated in the realm of complex analysis.

Your humble instructor therefore argues that the Fundamental Theorem of Algebra

is actually a result of some moderate interest in the theory of analytic complex

functions. After all, algebra in the modern sense does not deal so much with

polynomials (though this is a component of modern algebra), but instead deals

with the theory of groups, rings, and fields!
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