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Section V.3. Splitting Fields, Algebraic Closure,

and Normality (Supplement)

Note. In this supplement, we consider splitting fields of sets of an infinite number of

polynomials. In the the process, we give a more detailed definition of “algebraically

closed field” and an “algebraic closure” of a field than that given in the main notes

for this section. If we are running low on time, this supplement can be skipped.

Theorem V.3.3. The following conditions on a field F are equivalent:

(i) Every nonconstant polynomial f ∈ F [x] has a root in F ;

(ii) every nonconstant polynomial f ∈ F [x] splits over F ;

(iii) every irreducible polynomial in F [x] has degree one;

(iv) there is no algebraic extension field of F (except F itself);

(v) there exists a subfield K of F such that F is algebraic over K and every

polynomial in K[x] splits in F [x].

Definition. A field F satisfying any of the equivalent conditions of Theorem V.3.3

is algebraically closed.
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Note. By Theorem V.3.3(ii), we see that if F is algebraically closed and f ∈ F [x] is

of degree n, then f factors as f = u0(x−u1)(x−u2) · · · (x−un) where the roots are

u1, u2, . . . , un. We will see in the appendix to this section (in Theorem V.3.19, The

Fundamental Theorem of Algebra) that C is algebraically closed. The set, A, of all

algebraic (complex) numbers over Q form an algebraically closed field as shown in

Fraleigh’s Exercise 31.33 (A First Course in Abstract Algebra, 7th Edition). Many

familiar fields are not algebraically closed. Q is not algebraically closed (consider

x2−2); R is not algebraically closed (consider x2 +1). In Exercise V.3.8 it is shown

that no finite field is algebraically closed.

Theorem V.3.4. If F is an extension field of K, then the following conditions are

equivalent:

(i) F is algebraic over K and F is algebraically closed;

(ii) F is a splitting field over K of the set of all (irreducible) polynomials in K[x].

Definition. An extension field F of a field K that satisfies either of the (equivalent)

conditions of Theorem V.3.4 is an algebraic closure of K.

Note. We will see below (in Theorem V.3.6) that “an” algebraic closure of K is

unique (up to isomorphism).
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Note. By the “algebraic” comment of Theorem V.3.4(i) (and the “splitting field”

comment of condition (ii)) we have that an algebraic closure of K is “the small-

est” algebraically closed field containing K. For example, the algebraic (complex)

numbers A are the algebraic closure of Q (see the note in these class notes before

Theorem V.3.4). Now C is also algebraically closed and contains Q, but C is not

the algebraic closure of Q (C is the algebraic closure of R).

Note. The main result of this supplement is to prove that every field has an

algebraic closure. The argument (given below in Lemma V.3.5 and Theorem V.3.6)

is mostly set theoretic, as opposed to algebraic (another reason this supplement can

be skipped, if pressed for time). We start by recalling some set theoretic results

from Chapter 0.

Definition 0.8.3. Let α and β be cardinal numbers. The sum α+β is the cardinal

number |A ∪ B|, where A and B are disjoint sets such that |A| = α and |B| = β.

The product αβ is the cardinal number |A × B|.

Definition 0.8.4. Let α, β be cardinal numbers and A,B sets such that |A| = α,

|B| = β. α is less than or equal to β, denoted α ≤ β or β ≥ α, if A is equipollent

with a subset of β (that is, there is an injective map A → B).

Theorem 0.8.11. If α and β are cardinal numbers such that 0 6= β ≤ α and α is

infinite, then αβ = α; in particular, αℵ0 = α and if β is finite then ℵ0β = ℵ0.
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Theorem 0.8.12(ii). Let A be a set and for each n ∈ N let An = A×A× · · ·×A

(n factors). Then |∪n∈NAn| = ℵ0|A|.

Note. In A First Course in Abstract Algebra, 7th Edition, Fraleigh gives a proof

that every field has an algebraic closure (see pages 290 and 291 and my online notes

to Introduction to Modern Algebra 2, http://faculty.etsu.edu/gardnerr/4127/

notes/Algebraic-Closure.pdf). Fraleigh’s proof is very similar to Hungerford’s

proof of Theorem V.3.6. Another proof is given in Dummit and Foote’s Abstract

Algebra, 3rd Edition, John Wiley and Sons (2004), Section 13.4. This proof uses

results concerning ideals and maximal ideals, but otherwise is pretty much inde-

pendent of other results in the book. An additional interesting source is given by

Hanspeter Fischer of Ball State University. His proof is given as a supplement to

his notes and is posted online (see http://www.cs.bsu.edu/homepages/fischer/

math412/Closure.pdf).

Lemma V.3.5. If F is an algebraic extension field of K, then |F | ≤ ℵ0|K|.

Note. We recall Zorn’s Lemma since it is instrumental in the proof of the main

objective of this supplement.

Zorn’s Lemma. If A is a nonempty partially ordered set such that every chain in

A has an upper bound in A, then A has a maximal element.
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Note. Now for the main result of this supplement: The existence (and uniqueness)

of an algebraic closure.

Theorem V.3.6. Every field K has an algebraic closure. Any two algebraic

closures of K are K-isomorphic.

Note. Theorem V.3.6 allows us to show the existence of a splitting field for any

set of polynomials over a given field.

Corollary V.3.7. If K is a field and S a set of polynomials (of positive degree)

in K[x], then there exists a splitting field of S over K.

Note. We now address two more results from Section V.3 which we excluded from

the regular class notes. First, we give a proof of Theorem V.3.8 in the case of an

infinite set of polynomials. Finally, we state and prove the “Generalized Theorem

of Galois Theory.”

Note. The uniqueness claim in Theorem V.3.6 requires the following. The case

of a finite set of polynomials is given in the regular class notes, so we now give a

proof for an infinite set of polynomials.
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Theorem V.3.8. (For S infinite.) Let σ : K → L be an isomorphism of fields,

S = {fi} a set of polynomials (of positive degree) in K[x], and S′ = {σfi} the

corresponding set of polynomials in L[x]. If F is a splitting field of S over K and

M is a splitting field of S′ over L, then σ is extendible to an isomorphism F ∼= M .

Note. The original Fundamental Theorem of Galois Theory (Theorem V.2.5) deals

with finite dimensional Galois extensions (so that [F : K] is finite). Now that we

have dealt with infinite sets of polynomials (namely, splitting fields of an infinite

set of polynomials in Corollary V.3.9), we can address infinite dimensional Galois

extensions. In doing so, we consider closed subgroups of the Galois group AutKF .

Recall that H < AutKF is closed if H = H ′′ (by Lemma V.2.6(iii), H < H ′′).

Theorem V.3.12. (Generalized Fundamental Theorem of Galois Theory)

If F is an algebraic Galois extension field of K, then there is a one-to-one corre-

spondence between the set of all intermediate fields of the extension and the set of

all closed subgroups of the Galois group AutKF (given by E 7→ E ′ = AutEF ) such

that:

(ii)′ F is Galois over every intermediate field E, but E is Galois over K if and only

if the corresponding subgroup E ′ is normal in G = AutKF ; in this case G/E ′

is (isomorphic to) the Galois group AutKE of E over K.
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Note. The first part of the regular Fundamental Theorem of Galois Theory (The-

orem V.2.5(i)) claims that |AutKF | = [F : K]. This does not hold in the case

of F being Galois over K but an infinite extension. This is shown by example

in Exercise V.3.16. In the example, K = Q, E is a splitting field of the set of

polynomials S = {x2 +1 | a ∈ Q} (F can be taken to be the field A of all algebraic

complex numbers). It is argued that [E : Q] < |AutQE|, so that part (i) of the

regular Fundamental Theorem is violated.

Revised: 1/25/2016


