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Section V.3. Splitting Fields, Algebraic Closure,

and Normality (Partial)

Note. The topic of this section is the identification and construction of Galois

extensions. Our attention is turned to factoring polynomials and finding their

roots. We restrict our attention to finite collections of polynomials and omit the

part of this section concerning roots of infinite collections of polynomials. After this

section, we have the equipment to give a mostly-algebriac proof of the Fundamental

Theorem of Algebra.

Definition. Let F be a field and f ∈ F [x] a polynomial of positive degree. f is

said to split over F if f can be written as a product of linear factors in F [x]; that

is, f = u0(x − u1)(x − u2) · · · (x − un) with ui ∈ F . (So f splits over F if field F

contains all roots of f .)

Definition V.3.1. Let K be a field and f ∈ K[x] a polynomial of positive degree.

An extension field F of K is a splitting field over K of polynomial f if f splits in

F [x] where F = K(u1, u2, . . . , un) with u1, u2, . . . , un the roots of f in F . Let S

be a set of polynomials of positive degree in K[x]. An extension field F of K is a

splitting field over K of the set S of polynomials if every polynomial in S splits in

F [x] and F is generated over K by the roots of all the polynomials in S.
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Example. Polynomial x2 − 2 ∈ Q[x] has two roots, but the simple extension

Q(
√

2) is the splitting field since it contains both roots. Polynomial x3 − 2 ∈ Q[x]

has three roots in C, but the simple extension Q( 3
√

2) is not the splitting field for

x3 − 2 since it contains neither complex root.

Note. If field F is a splitting field of set S of polynomials over K, then F = K(X)

where set X is the set of all roots of the polynomials in set S (here, S ⊂ K[x]). By

Theorem V.1.12, F is algebraic over K. If set S is finite, say S = {f1, f2, . . . , fn}
then the set of roots for the polynomials in S is the same as the set of roots for

the single polynomial f1f2 · · · fn. So when we consider splitting fields of a set S

of polynomials, we are really only interested in the cases where S contains one

polynomial or S contains infinitely many polynomials. In these notes, we only

consider the situation concerning the case where S contains a finite number of

polynomials (or equivalently, a single polynomial). We have not yet established

the existence of splitting fields and the following result starts this process.

Theorem V.3.2. If K is a field and f ∈ K[x] has degree n ≥ 1, then there exists

a splitting field F of f with dimension [F : K] ≤ n!.

Definition. A field F in which every nonconstant polynomial f ∈ F [x] has a root

in F is algebraically closed. If F is an extension field of field K such that F is

algebraic over K and F is algebraically closed, then F is an algebraic closure of

field K.
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Note. If we start with field Q, then we have that Q ⊂ A (where A is the field of

algebraic complex numbers) and Q ⊂ C. Both A and C are algebraically closed—A

is algebraically closed as shown in Fraleigh’s A First Course in Abstract Algebra, 7th

Edition, Exercise 31.33, and C is algebraically closed by the Fundamental Theorem

of Algebra, as shown in the appendix to this section. An algebraic closure (soon

to be called the algebraic closure, after we prove Corollary V.3.9) of Q is A. The

complex numbers C are an algebraically closed extension field of Q, but C is not

an algebraic closure of Q since C is not an algebraic extension of Q.

Note. By the Factor Theorem, Theorem III.6.6, we see that if every f ∈ F [x] has

a root in F , then each such f can be factored into a product of linear terms. That

is, every nonconstant f splits over F . This also means that there is no (proper)

algebraic extension field of F .

Theorem V.3.6. Every field K has an algebraic closure. Any two algebraic

closures of K are K-isomorphic.

Note. The proof of Theorem V.3.6 requires Zorn’s Lemma. The result is largely

set-theoretic, as opposed to algebraic. You can find a proof in the Supplement to

these notes. Another self-contained proof can be found in the following notes:

http://faculty.etsu.edu/gardnerr/4127/notes/Algebraic-Closure.pdf
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Note. We now turn our attention to the uniqueness of splitting fields.

Theorem V.3.8. (For S finite.) Let σ : K → L be an isomorphism of fields,

S = {fi} a set of polynomials (of positive degree) in K[x], and S′ = {σfi} the

corresponding set of polynomials in L[x]. If F is a splitting field of S over K and

M is a splitting field of S′ over L, then σ is extendible to an isomorphism F ∼= M .

Note. Now we show the uniqueness of an algebraic closure.

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive degree)

in K[x]. Then any two splitting fields of S over K are K-isomorphic. In particular,

any two algebraic closures of K are K-isomorphic.

Definition. Let K be a field and f ∈ K[x] where f is not the zero polynomial.

Let c be a root of f . Then f(x) = (x − c)mg(x) where g(c) 6= 0 (see page 161 or

page 5 of these notes for Section III.6). Then c is a simple root if m = 1; c is a

multiple root if m > 1.

Definition V.3.10. Let K be a field and f ∈ K[x] an irreducible polynomial. The

polynomial f is separable if in some splitting field of f over K every root of f is a

simple root. If F is an extension field of K and u ∈ F is algebraic over K, then

element u is separable over K provided its irreducible polynomial is separable. If

every element of F is separable over K, then F is a separable extension of K.
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Note. By Theorem III.6.10(i), an irreducible polynomial in K[x] is separable if

and only if its derivative is nonzero. By Exercise III.6.3(a), if char(K) = 0 then

for any irreducible polynomial f (any polynomial, in fact) we have f ′ 6= 0, so if

char(K) = 0 then every irreducible polynomial is separable. By Corollary V.3.9, a

separable polynomial has no multiple zeros in any splitting field f over K (since

all splitting fields of f over K are K-isomorphic). We therefore have:

Lemma. Every algebraic extension field of a field of characteristic 0 is separable.

Theorem V.3.11. If F is an extension field of K, then the following statements

are equivalent.

(i) F is algebraic and Galois over K.

(ii) F is separable over K and F is a splitting field over K of a set S of polynomials

in K[x].

(iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Definition V.3.13. An algebraic extension field F of K is normal over K (or

a normal extension) if every irreducible polynomial in K[x] that has a root in F

actually splits in F [x].

Theorem V.3.14. If F is an algebraic extension field of K, then the following

statements are equivalent.

(i) F is normal over K.

(ii) F is a splitting field over K of some set of polynomials in K[x].

(iii) If K is algebraically closed, contains K, and contains F , then for any K-

monomorphism of fields σ : F → K (that is, σ is a one to one homomorphism
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and σ fixes K elementwise), then Im(σ) = F so that σ is actually a K-

automorphism of F (that is, σ ∈ AutK(F )).

Corollary V.3.15. Let F be an algebraic extension field of K. Then F is Galois

over K if and only if F is normal and separable over K. If char(K) = 0, then F is

Galois over K if and only if F is normal over K.

Note. The following result will play a role in our proof of the Fundamental Theo-

rem of Algebra in the appendix to this section.

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an

extension field F of E such that:

(i) F is normal over K;

(ii) No proper subfield of F containing E is normal over K;

(iii) If E is separable over K, then F is Galois over K;

(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Definition. The field F of Theorem V.3.16 is the normal closure of E over K.
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