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Section V.4. The Galois Group of a Polynomial

(Supplement)

Note. In this supplement to the Section V.4 notes, we present the results from

Corollary V.4.3 to Proposition V.4.11 and some examples which use these results.

These results are rather specialized in that they will allow us to classify the Ga-

lois group of a 2nd degree polynomial (Corollary V.4.3), a 3rd degree polynomial

(Corollary V.4.7), and a 4th degree polynomial (Proposition V.4.11). In the event

that we are low on time, we will only cover the main notes and skip this supple-

ment. However, most of the exercises from this section require this supplemental

material.

Note. The results in this supplement deal primarily with polynomials all of whose

roots are distinct in some splitting field (and so the irreducible factors of these

polynomials are separable [by Definition V.3.10, only irreducible polynomials are

separable]). By Theorem V.3.11, the splitting field F of such a polynomial f ∈ K[x]

is Galois over K. In Exercise V.4.1 it is shown that if the Galois group of such

polynomials in K[x] can be calculated, then it is possible to calculate the Galois

group of an arbitrary polynomial in K[x].

Note. As shown in Theorem V.4.2, the Galois group G of f ∈ K[x] is iso-

morphic to a subgroup of some symmetric group Sn (where G = AutKF for

F = K(u1, u2, . . . , un) where the roots of f are u1, u2, . . . , un). Notationally, we

do not distinguish between G and the subgroups of Sn (such as An), so we treat

the elements of G as elements of Sn.
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Note. The following result classifies the Galois group of 2nd degree polynomials

in terms of the polynomial’s separability (and the characteristic of the field).

Corollary V.4.3. The Galois Group of a Degree 2 Polynomial.

Let K be a field and f ∈ K[x] an irreducible polynomial of degree 2 with Galois

group G. If f is separable (as is always the case when char(K) 6= 2), then G ∼= Z2;

otherwise G = {ι} = 1.

Note. For f a degree 3 irreducible, separable polynomial, Theorem V.4.2(ii) im-

plies that the Galois group is a transitive subgroup of S3. Since |S3| = 6, a proper

subgroup of S3 must have order 1, 2, or 3. A subgroup of order 1 or 2 cannot

be transitive. The only subgroup of order 3 is A3
∼= Z3, which is transitive. So

the only transitive subgroups of S3 are S3 itself and A3
∼= Z3. Hence, the only

possible Galois group for an irreducible, separable degree 3 polynomial is either S3

or A3. In order to determine which of these is the Galois group for a given degree

3 polynomial, we need more equipment.

Definition V.4.4. Let K be a field with char(K) 6= 2 and f ∈ K[x] a polynomial

of degree n with n distinct roots u1, u2, . . . , un is some splitting field F of f over

K. Let ∆ =
∏

i<j

(ui −uj) = (u1−u2)(u1 −u3) · · · (un−1 −un) ∈ F. The discriminant

of f is the element D = ∆2 ∈ F . (Some texts include a factor of a2n−2
n in D, where

f is degree n with xn coefficient of an. We’ll discuss this more below.)
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Note. From classical algebra (with K = R) you are familiar with the “discrim-

inant” of the quadratic equation: ax2 + bx + c = 0 implies x =
−b ±

√
b2 − 4ac

2a
and the “discriminant” is D = b2 − 4ac. If a = 1 (so the polynomial is monic) and

the zeros of the polynomial are u1, u2 ∈ C, then x2 + bx + c = (x − u1)(x − u2) =

x2+(−u1−u2)x+u1u2 and we have D = b2−4ac = (−u1−u2)
2−4(u1u2) = (u1−u2)

2

and ∆ = (u1 − u2).

Proposition V.4.5. Let K, f, F and ∆ be as in Definition V.4.4.

(i) The discriminant ∆2 of f actually lies in K.

(ii) For each σ ∈ AutkF < Sn, σ is an even (respectively, odd) permutation if and

only if σ(∆) = ∆ (respectively, σ(∆) = −∆).

Corollary V.4.6. Let K, f, F,∆ be as in Definition V.4.4 (so that F is Galois

over K) and consider G = AutKF as a subgroup of Sn. In the Galois correspon-

dence (Theorem V.2.5) the subfield K(∆) corresponds to the subgroup G∩An. In

particular, G consists of even permutations if and only if ∆ ∈ K.

Note. We leave the proof of Corollary V.4.6 as homework. We now have the

equipment to deal with determining the Galois group of an irreducible, separable

polynomial of degree 3.
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Corollary V.4.7. The Galois Group of Degree 3 Polynomials.

Let K be a field and f ∈ K[x] an irreducible, separable polynomial of degree 3.

The Galois group of f is either S3 or A3. If char(K) 6= 2, it is A3 if and only if the

discriminant D = ∆2 of f is the square of some element of K.

Note. If K = R then the sign of the discriminant determines how many real roots

of degree 3 polynomial f has, as shown in Exercise V.4.2. The following is useful

in determining whether or not the discriminant of f is a square of some element of

K.

Proposition V.4.8. Let K be a field with char(K) 6= 2, 3. If f(x) = x3 + bx3 +

cx + d ∈ K[x] has three distinct roots in some splitting field, then the polynomial

g(x) = f(x − b/3) ∈ K[x] has the form x3 + px + q and the discriminant of f is

−4p3 − 27q2.

Note. In the proof of Proposition V.4.8, we see that the discriminant of f =

x3 + bx2 + cx + d is −4p3 − 27q2 where p = −b2/3 + c and q = 2b3/27 − bc/3 + d.

So in terms of b, c, d, the discriminant of f is

D = ∆2 = −4p3 − 27q2 = −4(−b2/3 + c)3 − 27(2b3/27 − bc/3 + d)2

= b2c2 − 4c3 − 4b3d − 27d2 + 18bcd. (1)

Now the polynomial ax3 + bx2 + cx + d has the same roots (and so the same

discriminant) as x3 + (b/a)x2 + (c/a)x + (d/a). Replacing b with b/a, c with c/a,
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and d with d/a in (1) gives that the discriminant of ax3 + bx2 + cx + d is

b2c2/a4 − 4c3/a3 − 4b3d/a4 − 27d2/a2 + 18bcd/a3

= a−4(b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd).

Some texts define the discriminant of a monic polynomial using Hungerford’s defini-

tion, but for a nonmonic polynomial, say the polynomial is degree n with coefficient

an of xn add a multiple of a2n−2
n (which of course is a perfect square of an element in

K, namely an−1
n ); see Dummit and Foote’s Abstract Algebra, Third Edition, John

Wiley and Sons (2004), the footnote on page 610. With this definition, the dis-

criminant of ax3 + bx2 + cx + d is b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd. You may

see this quoted as the discriminant of a cubic in some other references. Since this

value differs from Hungerford’s value by a factor of a perfect square, this changes

none of the results concerning the Galois group of a polynomial.

Example. Consider f = x3 − 3x + 1 ∈ Q[x]. By Proposition III.6.8 (with C = Z

and F = Q), the only possible rational roots of f are ±1, but neither of these is

a root, so f has no rational roots. Sincef is degree 3, if it factors in Q[x] then

one of the factors would have to be a linear term in Q[x], but linear terms in Q[x]

correspond to roots in Q by the Factor Theorem (Theorem III.6.6). So f does

not factor in Q[x] and f is irreducible in Q[x]. Now f ′ = 3x2 − 3 is not the zero

polynomial, so by Theorem III.6.10(iii), f has no multiple roots, so f is separable.

Since f is an irreducible, separable degree 3 polynomial, we apply Corollary V.4.7.

The discriminant of f (with a = 1, b = 0, c = −3, and d = 1 in Equation (1)) is

(0)2(−3)2 − 4(−3)3 − 4(0)3(1) − 27(1)2 + 18(0)(−3)(1) = 81. Since 81 is a square

of 9 ∈ Q, then the Galois group of f is A3.
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Example. If f(x) = x3 +3x2 −x−1 ∈ Q[x], then g(x) = f(x−3/3) = f(x−1) =

x3 − 4x + 2. Now g is irreducible over Q by the Eisenstein Criterion (Theorem

III.6.15, with p = 2), and so f is also irreducible over Q. Now f ′ = 3x2 + 6x− 1 is

not the zero polynomial, so by Theorem III.6.10(iii), f has no multiple roots, so f

is separable. The discriminant of f (with a = 1, b = 3, c = −1, and d = −1 is in

Equation (1)) is (3)2(−1)2 −4(−1)3 −4(3)3(−1)−27(−1)2 +18(3)(−1)(−1) = 148.

Since 148 is not a square of some element of Q (since
√

148 = 2
√

37) then by

Corollary V.4.7, the Galois group of f is S2. (Notice that we only used g to show

the irreducibility of f ; we could have computed the discriminant of g instead of the

discriminant of f , as Hungerford does, since f and g have the same determinant. We

still need to show the separability of f , which Hungerford omits, to use Corollary

V.4.7.)

Note. We now consider degree 4 polynomials (i.e., “quartics”). We let f ∈ K[x]

be a separable quartic with distinct roots u1, u2, u3, u4 and splitting field F =

K(u1, u2, u3, u4). By Theorem V.3.11 (the (ii)⇒(i) part), F is Galois over K and

elements of the Galois group of f , AutKF , are determined by their behavior on

u1, u2, u3, u4. So notationally, we treat the elements of AutKF as elements of S4

(see Theorem V.4.2(ii)). Now the Klein-4 group V = {(1), (1, 2)(3, 4), (1, 3)(2, 4),
(1, 4)(2, 3)} is normal in S4 by Exercise I.6.7 and we will see that V arises in this

discussion.
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Lemma V.4.9. Let K, f, F, ui, V , and G = AutKF < S4 be as just described.

If α = u1u2 + u3u4, β = u1u3 + u2u4, γ = u1u4 + u2u3 ∈ F , then under the

Galois correspondence of the Fundamental Theorem (Theorem V.2.5) the subfield

K(α, β, γ) corresponds to the normal subgroup V ∩ G. Hence K(α, β, γ) is Galois

over K and AutKK(α, β, γ) ∼= G/(G ∩ V ).

Definition. Let K, f, F, ui, and α, β, γ be as in Lemma V.4.9. The polynomial

(x − α)(x − β)(x − γ) ∈ K(α, β, γ)[x] is the resolvant cubic of f .

Note. The next result shows that the resolvant cubic is actually in K[x].

Lemma V.4.10. If K is a field and f = x4 + bx3 + cx2 + dx + e ∈ K[x], then the

resolvant cubic of f is the polynomial x3 − cx2 +(bd−4e)x− b2e+4ce−d2 ∈ K[x].

Note. We are almost ready to address the Galois group of any irreducible, separa-

ble quartic. We need a little more knowledge concerning S4. By Theorem V.4.2(ii),

the Galois group G of a quartic is a transitive subgroup of S4 with order a multiple

of 4. So the subgroup of S4 must be of order 24 (in which case G = S4), 12, 8, or

4.



V.4. The Galois Group of a Polynomial (Supplement) 8

Note. With the standard notation for S4 (though we suppress the commas within

the cycles) we can verify that the following are the only subgroups of S4 of the rel-

evant orders (see http://users.math.yale.edu/∼auel/courses/370f06/docs/

solutions5.pdf):

Order Elements ∼= Transitive

12 {(1), (12)(34), (13)(24), (14)(23), (123), (132), A4 Yes

(124), (142), (134), (143), (234), (243)}
8 {(1), (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)} D4 Yes

8 {(1), (13), (24), (13)(24), (12)(34), (14)(23), (1234), (1432)} D4 Yes

8 {(1), (14), (23), (14)(23), (12)(34), (13)(24), (1243), (1342)} D4 Yes

4 {(1), (12), (34), (12)(34)} Z2 ⊕ Z2 No

4 {(1), (13), (24), (13)(24)} Z2 ⊕ Z2 No

4 {(1), (14), (23), (14)(23)} Z2 ⊕ Z2 No

4 {(1), (12)(34), (13)(24), (14)(23)} V ∼= Z2 ⊕ Z2 Yes

4 {(1), (1324), (12)(34), (1423)} Z4 Yes

4 {(1), (1234), (13)(24), (1432)} Z4 Yes

4 {(1), (1243), (14)(23), (1342)} Z4 Yes

So the only possible Galois groups for a quartic are (up to isomorphism) S4, A4,

D4, V ∼= Z2 ⊕ Z2, or Z4.

Proposition V.4.11. Let K be a field and f ∈ K[x] an irreducible, separable

quartic with Galois group G (considered as a subgroup of S4). Let α, β, γ be the

roots of the resolvant cubic of f and let m = [K(α, β, γ) : K]. Then

(i) m = 6 ⇔ G = S4;

(ii) m = 3 ⇔ G = A4;

(iii) m = 1 ⇔ G = V ;

(iv) m = 2 ⇔ G ∼= D4 or G ∼= Z4; the the case that G ∼= D4, if f is irreducible

over K(α, β, γ) and G ∼= Z4.
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Note. We now illustrate Proposition V.4.11 with some examples.

Example. Consider f = x4 + 4x2 + 2 ∈ Q[x]. Then f is irreducible in Q[x] by

Eisenstein’s Criterion (Theorem III.6.15, with p = 2). Since f ′ = 3x2+8x is not the

zero polynomial then by Theorem III.6.10(iii), f has no multiple roots in a splitting

field of F and so f is separable. In the notation of Lemma V.4.10, b = 0, c = 4,

d = 0, and e = 2, so the resolvant cubic is x3 − cx2 + (bd− 4e)x− b2e + 4ce − d2 =

x3 − 4x2 − 8x + 32 = (x − 4)(x2 − 8), we take α =, β =
√

8, γ = −
√

8. Then

Q(α, β, γ) = Q(
√

8) = Q[
√

2) and so m = [Q(α, β, γ) : Q] = [Q(
√

2) : Q] = 2. So

the Galois group of f is isomorphic to either D4 or Z4. By Proposition V.4.11(iv)

we need to determine if f is irreducible or not over Q(α, β, γ) = Q(
√

2). Since f is

a quadratic in x2, we can find the four roots of f (in C) and we find that the roots

are ±
√

−2 ±
√

2 ∈ R ⊂ C. So we have

f = (x −
√

−2 +
√

2)(x +

√

−2 +
√

2)(x −
√

−2 −
√

2)(−2 +

√

−2 −
√

2)

= (x2 − (−2 +
√

2))(x2 − (−2 −
√

2))

and f is reducible in Q(
√

2) and so by Proposition V.4.11(iv), the Galois group of

f is G ∼= Z4.
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Example. Let f = x4−2 ∈ Q[x]. Then f is irreducible by the Eisenstein Criterion

(Theorem III.6.15, with p = 2). f has four distinct roots in C, 4
√

2,− 4
√

2, 4
√

2i,− 4
√

2i,

and so f is separable. In the notation of Lemma V.4.10, we have b = c = d = 0 and

e = −2, so the resolvant cubic of f is x3 +8x = x(x2 +8) = x(x+
√

8i)(x−
√

8i) =

x(x + 2
√

2i)(x − 2
√

2i). So Q(α, β, γ) = Q(
√

2i) and m = [Q(α, β, γ) : Q] =

[Q(
√

2i) : Q] = 2. So the Galois group of f is isomorphic to either D4 or Z4.

By Proposition V.4.11(iv) we need to determine if f is irreducible or not over

Q(α, β, γ) = Q(
√

2i). If f is reducible in Q(
√

2i) then f must have either a linear

or a quadratic factor in Q(
√

2i)[x]. None of the roots of f , 4
√

2,− 4
√

2, 4
√

2i,− 4
√

2i

are in Q(
√

2i), so by the Factor Theorem (Theorem III.6.6), f has no linear factors

in Q(
√

2i). If f can be written as a product of two quadratics, we consider all

possible quadratic factors of f :

• (x − 4
√

2)(x + 4
√

2) = x2 −
√

2 and (x − 4
√

2i)(x + 4
√

2) = (x2 +
√

2).

• (x − 4
√

2)(x − 4
√

2i) = x2 − ( 4
√

2 + 4
√

2i)x +
√

2i and (x + 4
√

2)(x + 4
√

2i) = x2 +

( 4
√

2 + 4
√

2i)x +
√

2i.

• (x − 4
√

2)(x + 4
√

2i) = x2 + (− 4
√

2 + 4
√

2i)x −
√

2i and (x + 4
√

2)(x − 4
√

2i) =

x2 + ( 4
√

2 − 4
√

2i)x −
√

2i.

Now the elements of Q(
√

2i) are of the form q1+q2

√
2i where q1, q2 ∈ Q by Theorem

V.1.6(v), and since neither
√

2 nor 4
√

2 are in Q(
√

2i) and so none of the possible

quadratic factors of f are in Q(
√

2i) and hence f is irreducible over Q(
√

2i). There-

fore by Proposition V.4.11(iv), the Galois group of f is isomorphic to D4.
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Note. Hungerford gives another example of a Galois group. Consider f = x4 −
5x2 + 6 ∈ Q[x]. Notice that f is not irreducible in Q[x] since f = (x2 − 2)(x2 − 3)

and so Proposition V.4.11 does not apply (though f is separable). Hungerford gives

a lengthy explanation (using the Fundamental Theorem, Theorem V.4.2, Corollary

V.4.3, Corollary V.1.9, and Exercise I.4.5) showing that the Galois group of f

is isomorphic to Z2 ⊕ Z2. This is not surprising since the roots of f (in R) are

±
√

2 and ±
√

3. So we can take F = Q(
√

2,
√

3) as a splitting field of F and

then AutKF = AutQQ(
√

2,
√

3) must consist of mappings which are the identity

on Q and map
√

2 to ±
√

2 and map
√

3 to ±
√

3. In fact, Fraleigh shows that

AutQQ(
√

2,
√

3) in his Example 48.17 (though this is not done before Fraleigh

addresses splitting fields and Galois groups).

Note. On page 276 Hungerford comments that “Specific techniques for computing

Galois groups of polynomials of degree greater than 4 over arbitrary fields are rather

scarce.” However, Theorem V.4.12 (return to the notes for this section) gives a

technique to find the Galois group of a particular type of general polynomial in

Q[x].

Revised 5/2/2016


