
V.4. The Galois Group of a Polynomial (Partial) 1

Section V.4. The Galois Group of a Polynomial (Partial)

Note. We present some of the results from this section of the text. We only

give the results which are needed for our future explorations (in particular, the

unsolvability of the quintic in the appendix to Section V.9).

Definition V.4.1. Let K be a field. The Galois group of polynomial f ∈ K[x] is

the group AutK(F ) where F is a splitting field of f over K.

Note. By Corollary V.3.9, any two splitting fields of f over K are K-isomorphic

(that is, are isomorphic under an isomorphism which fixes K).

Recall. A subgroup G of the symmetric group Sn is transitive if given any i 6= j

(with 1 ≤ i, j ≤ n) there exists σ ∈ G such that σ(i) = j (see Exercise II.4.6 for a

more general definition).

Theorem V.4.2. Let K be a field and f ∈ K[x] a polynomial with Galois group

G.

(i) G is isomorphic to a subgroup of some symmetric group Sn.

(ii) If irreducible f is separable of degree n, then n divides |G| and G is isomorphic

to a transitive subgroup of Sn.
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Note. Theorem V.4.2 allows us to discuss Galois groups of a polynomial in terms

of their isomorphic image which is a subgroup of Sn (the permutation group of the

roots of the polynomial). See the supplement to this section of notes for results

concerning Galois groups of polynomials of degrees 2, 3, and 4.

Note. We now present two examples from Fraleigh’s A First Course in Abstract

Algebra, 7th edition. The following example is on pages 275-76 of Hungerford (but

Hungerford uses some of the results we have skipped), but we present it in a way

independent of the skipped results and with a slightly different notation from what

Hungerford has used (in the diagrams of groups and intermediate fields, we always

include the larger structures at the top of the diagram).

Example. (Fraleigh, Example 54.3) Let K be the splitting field of x4−2 over Q.

Now x4 − 2 is irreducible over Q (by Eisenstein’s Criterion, Theorem III.6.15, with

p = 2). In C, the zeros of x4−2 are 4
√

2, − 4
√

2, i 4
√

2, −i 4
√

2. Denote α = 4
√

2. Since K

must contain both α and iα, then K must contain iα/α = i. So K 6= Q(α). Since

K must contain i and α, and Q(α, i) contains all zeros of x4 −2, then K = Q(α, i).

Denote E = Q(α) and we then have Q ≤ E = Q(α) ≤ K = Q(α, i).

Now, a basis for E = Q(α) over Q is {1, α, α2, α3}, and a basis for K = Q(α, i)

over E = Q(α) is {1, i}. So [E : Q] = 4 and [K : E] = 2. So by Theorem V.1.2,

[K : Q] = [K : E][E : Q] = 8. A basis for K over Q is {1, α, α2, α3, i, iα, iα2, iα3}.
Since K is the splitting field of x4−2 and since each zero of x4−2 is of multiplicity 1

then by Theorem V.3.11 (the (ii) implies (i) part) K is Galois over Q. So by the Fun-
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damental Theorem of Galois Theory (Theorem V.2.5(i)) [K : Q] = |AutQ(K)| = 8.

So there are 8 automorphisms of K leaving Q fixed. Such an automorphism is

determined by its behavior on the basis {1, α, α2, α3, i, iα, iα2, iα3}, and hence de-

termined by its value on i and α. Let σ be such an automorphism. By Theorem

V.2.2 σ(α) must be a conjugate of α—that is, a zero of irr(α, Q) = x4−2—so there

are 4 such permutations. Similarly, σ(i) must be a zero of irr(i, Q) = x2 + 1 and

there are 2 such resulting permutations. This leads to the following 8 permutations

in terms of the images of α and i:

Permutation σ ρ0 ρ1 ρ2 ρ3 µ1 δ1 µ2 δ2

σ(α) α iα −α −iα α iα −α −iα

σ(i) i i i i −i −i −i −i

With this notation, we find that these 8 permutations produce the permutation

group D4 (see Fraleigh’s Table 8.12 on page 80 of the 7th edition; the subgroup

diagram is also given on page 80). Here are both the group diagram and the

corresponding field diagram.

D4
∼= AutQ(K)
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H1 = {ρ0, ρ2, µ1, µ2}
H2 = {ρ0, ρ1, ρ2, ρ3}
H3 = {ρ0, ρ2, δ1, δ2}
H4 = {ρ0, µ1}
H5 = {ρ0, µ2}
H6 = {ρ0, ρ2}
H7 = {ρ0, δ1}
H8 = {ρ0, δ2}
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K = Q( 4
√

2, i)
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KH1
= Q(

√
2)

KH2
= Q(i)

KH3
= Q(i

√
2)

KH4
= Q( 4

√
2)

KH5
= Q(i 4

√
2)

KH6
= Q(

√
2, i)

KH7
= Q( 4

√
2 + i 4

√
2)

KH8
= Q( 4

√
2 − i 4

√
2)

Example. (Fraleigh, Example 54.7) Consider the splitting field of x4 + 1 over

Q. The roots of x4 + 1 are

α =
1 + i√

2
, α3 =

−1 + i√
2

, α5 =
−i − i√

2
, α7 =

1 − i√
2

.

So the splitting field K of x4 + 1 over Q is Q(α) and [K : Q] = 4 since a basis

for K over Q is {1, 1/
√

2, i/
√

2, i}. Now to find AutQ(K). By Theorem V.4.2(ii),

AutQ(K) is isomorphic to a transitive subgroup of S4, so there is an automorphism

of K mapping α to each conjugate of α. Such an automorphism σ is determined

by the value of σ(α), so there are four such automorphisms:

Permutation σ σ1 σ3 σ5 σ7

σ(α) α α3 α5 α7

We can verify that the group 〈{σ1, σ3, σ5, σ7}, ·〉 is isomorphic to 〈{1, 3, 5, 7}, ·8〉
which in turn is isomorphic to the Klein 4-group V ∼= Z2×Z2. The proper nontrivial
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subgroups of {σ1, σ3, σ5, σ7} are {σ1, σ3}, {σ1, σ5}, and {σ1, σ7}. The intermediate

fields between Q and Q(α) = Q((1 + i)/
√

2) are Q(i
√

2), Q(i), and Q(
√

2). We

find

1. σ1(α) + σ3(α) = α + α3 = i
√

2, so σ1(i
√

2) = σ1(α + α3) = σ1(α) + σ1(α
3) =

α + α3 = i
√

2 and σ3(i
√

2) = σ3(α + α3) = σ3(α) + σ3(α
3) = α3 + α = i

√
2.

2. σ1(α) + σ7(α) = α + α7 =
√

2, so σ1(
√

2) = σ1(α + α7) = σ1(α) + σ1(α
7) =

α + α7 =
√

2 and σ7(
√

2) = σ7(α + α7) = σ7(α) + σ7(α
7) = α7 + α =

√
2.

3. σ1(α)σ5(α) = αα5 = α6 = −i, so σ1(−i) = σ1(ασ5(α)) = σ1(α)σ5(α) = αα5 =

α6 = −i and σ5(−i) = σ5(ασ5(α)) = σ5(α)σ5(α
5) = α5α = α6 = −i.

and so K{σ1,σ3} = Q(i
√

2), K{σ1,σ7} = Q(
√

2), and K{σ1,σ5} = Q(i). Therefore the

group diagram and field diagram are:

AutQ(K)

{σ1, σ3}

{σ1}

{σ1, σ5} {σ1, σ7}
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K = Q(α)
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√
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Theorem V.4.12. If p is prime and f is an irreducible polynomial of degree p over

the field of rational numbers Q which has precisely two nonreal roots in the field of

complex numbers C and p − 2 real roots, then the Galois group of f is isomorphic

to Sp.
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Note. Hungerford gives examples of the computation of Galois groups for several

4th degree polynomials on pages 274–276. He then states that “Specific techniques

for computing Galois groups of polynomials of degree greater than 4 over arbitrary

fields are rather scarce.” Theorem V.4.12 allows us to show that the Galois group

of a certain type of polynomial is Sp.

Example. Consider f(x) = x5 − 4x + 2 ∈ Q[x]. We can use Calculus I to show

that f has exactly three distinct real roots and, by the Fundamental Theorem of

Algebra, two complex roots. By Eisenstein’s Criterion (Theorem III.6.15) with

p = 2, f is irreducible. So by Theorem V.4.12, the Galois group is S5.
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