Section V.5. Finite Fields

Note. In this section, as Hungerford states (on page 278) "finite fields... are characterized in terms of splitting fields and their structure completely determined." We also present a result to give a clear classification of finite groups in terms of their order and characteristic.

Theorem V.5.1. Let F be a field and let P be the intersection of all subfields of F. Then P is a field with no proper subfields. If $\operatorname{char}(F) = p$ (where p is prime), then $P \cong \mathbb{Z}_p$. If $\operatorname{char}(F) = 0$ then $P \cong \mathbb{Q}$.

Note. The field P of Theorem V.5.1 is called the *prime subfield* of field F. Notice that it is the "smallest" subfield of F. So \mathbb{Z}_p is a subfield of every field of characteristic p and \mathbb{Q} is a subfield of every field of characteristic 0 (up to isomorphism). Notice that this implies that there is no proper subfield of \mathbb{Q} (up to isomorphism...2 \mathbb{Q} is technically a subfield).

Corollary V.5.2. If F is a finite field, then $char(F) = p \neq 0$ for some prime p and $|F| = p^n$ for some $n \in \mathbb{N}$.

Theorem V.5.3. If F is a field and G is a finite subgroup of the multiplicative group of nonzero elements of F, then G is a cyclic group. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.

Corollary V.5.4. If F is a finite field, then F is a simple extension of its prime subfield \mathbb{Z}_p ; that is, $F = \mathbb{Z}_p(u)$ for some $f \in F$. (Notice Hungerford's comment on page 279 that we do not distinguish between $P \cong \mathbb{Z}_p$ and $P = \mathbb{Z}_p$ in term of the prime subfield.)

Note. The next two results will allow us to clearly classify finite fields in Corollary V.5.7.

Lemma V.5.5. If F is a field of characteristic p and if $r \ge 1$ is an integer, then the map $\varphi : F \to F$ given by $u \mapsto u^{p^r}$ is a \mathbb{Z}_p -monomorphism of fields. If F is finite, then φ is a \mathbb{Z}_p -automorphism of F.

Note. The following is a classification of finite fields in terms of splitting fields.

Proposition V.5.6. Let p be a prime and $n \ge 1$ an integer. Then F is a finite field with p^n elements if and only if F is a splitting field of $x^{p^n} - x$ over \mathbb{Z}_p .

Corollary V.5.7. If p is a prime and $n \in \mathbb{N}$, then there exists a field with p^n elements. Any two finite fields with the same number of elements are isomorphic.

Proof. Given p and n, a splitting field F of $x^{p^n} - x$ over \mathbb{Z}_p exists by Theorem V.3.2. By Proposition V.5.6, this splitting field has order p^n . Since every finite field of order p^n is a splitting field of $x^{p^n} = x$ over \mathbb{Z}_p by Proposition V.5.6 (it is an if-and-only-if result), any two such fields are isomorphic by Corollary V.3.9.

Corollary V.5.8. If K is a finite field and $n \in \mathbb{N}$, then there exists a simple extension field F = K(U) of K such that F is finite and [F : K] = n. Any two *n*-dimensional extension fields of K are K-isomorphic.

Note. The following result implies that no finite field is algebraically closed. We leave the proof as an exercise.

Corollary V.5.9. If K is a finite field and $n \in \mathbb{N}$, then there exists an irreducible polynomial of degree n in K[x].

Proposition V.5.10. If F is a finite dimensional extension field of a finite field K, then F is finite and is Galois over K. The Galois group $Aut_K(F)$ is cyclic.

Note. By Corollary V.5.2, if F is a finite field then $|F| = p^n$ for some prime p and some $n \in \mathbb{N}$. In addition, as seen in the proof of Corollary V.5.2, $F \cong \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$. By theorem V.5.3, the multiplicative group of all nonzero elements of a finite field is cyclic. I summarize this as (my choice of title):

Fundamental Theorem of Finite Fields. A finite field of order m exists if and only if $m = p^n$ for some prime p and some $n \in \mathbb{N}$. All fields of order p^n are isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$ (that is, elements add as n-tuples of elements of \mathbb{Z}_p). As a group under multiplication, the set of nonzero elements forms a cyclic group of order $m - 1 = p^n - 1$ and so is isomorphic to the group \mathbb{Z}_{p^n-1} .

Note. For an example of a finite field of order $16 = 2^4$, see my class notes for Introduction to Modern Algebra 2 (MATH 4137/5137):

http://faculty.etsu.edu/gardnerr/4127/notes/VI-33.pdf

This example is based on results from Chapter 22, "Finite Fields," in Joseph Gallian's *Contemproary Abstract Algebra* 8th Edition, Brooks/Cole (2013).

Revised: 1/1/2016