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Section V.7. Cyclic Extensions

Note. In the last three sections of this chapter we consider specific types of Ga-

lois groups of Galois extensions and then study the properties of the associated

extension field. In this section we consider cyclic Galois groups. The main results

are Proposition V.7.7, Proposition V.7.8, and Theorem V.7.11. We need Lemma

V.7.10 and Theorem V.7.11 in the proof of Theorem V.9.4 which in turn leads in

Section V.9 to the proof of Galois’ big result: Polynomial equation f(x) = 0 is

solvable by radicals if and only if the Galois group of f is solvable (see Corollary

V.9.7).

Definition V.7.1. Let F be a finite dimensional extension field of K and K

an algebraic closure of K containing F . Let σ1, σ2, . . . , σr be all the distinct K-

monomorphisms mapping F → K. If u ∈ F then the norm of u, denoted NK
F (u)

is the element of K

NK
F (u) = (σ1(u), σ2(u), . . . , σr(u))[F :K]i

where [F : K]i is the inseparable degree of F over K (see Definition V.6.10). The

trace of u, denoted TK
F (u), is the element of K

TK
F (u) = [F : K]i(σ1(u) + σ2(u) + · · · + σr(u)).
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Note. The definition of norm and trace seem to depend on the choice of the

algebraic closure of K, K. However, in Theorem V.7.3 we show that the definition

is independent of the choice of K (which is not surprising since any two algebraic

closures of K are K-isomorphic by Theorem V.3.6).

Note. Exercise V.7.1 states that is, in Definition V.7.1, K is replaced by any

normal extension N of K which contains F , then the same definition of norm and

trace results—in particular, this new definition does not depend on the choice of N .

Notice that K is a splitting field over K of the set of all (irreducible) polynomials

in K[x] by Theorem V.3.4 (the (i)⇒(ii) part) and K is then normal over K by

Theorem V.3.14 (the (ii)⇒(i) part). Then, by Proposition V.6.12 (notice that F

is finite dimensional over K in the definition of norm and trace) the number of

K-monomorphisms mapping F → N (or equivalently, mapping F → K by the

above comments) is r = [F : K]s.

Example. In the setting of fields R and C, we find that the norm is familiar. Let

F = C and K = R. Then K = R = C. The only R-monomorphism mapping

C → C are the identity σ1(z) = z and complex conjugation σ2(x) = z. Also, [F :

K]i = [C : R]i = [C : S] where S is the largest subfield of C which is separable over

K = R (so S = C since every polynomial over R can be factored into a product of

linear terms and irreducible quadratics and hence the only irreducible polynomials

over R are linear or irreducible quadratics and in either case the polynomials are

separable [i.e., have roots in C of multiplicity 1]) and [F : K]i = [C : C] = 1.

Consequently, denoting NK
F = NR

C as simply N , we have

N(a + bi) = (σ1(a + bi)(σ2(a + bi))[F :K]i = ((a + bi)(a − bi))1 = a2 + b2.
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Note. When F is Galois over K, there is a more concise representation of the

norm and trace, as given next.

Theorem V.7.2. If F is a finite dimensional Galois extension field of K and

AutK(F ) = {σ1, σ2, . . . , σn} then for any u ∈ F ,

NK
F (u) = σ1(u)σ2(u) · · ·σn(u); and

TK
F (u) = σ1(u) + σ2(u) + · · · + σn(u).

Note. Suppose F is Galois over K and AutK(F ) = {σ1, σ2, . . . , σn}. Since

AutK(F ) is a group, the elements σiσ1, σiσ2, . . . , σiσn are simply σ1, σ2, . . . , σn in

a possible different order (multiplication by σi on the left permutes the elements

of group AutK(F )). So for any u ∈ F , NK
F (u) and TK

F (u) are fixed by every

σi ∈ AutK(F ). but this property implies that NK
F (u) and TF

K (u) must lie in K.

The next result shows that this property holds even if F is not Galois over K. We

will use parts (i) and (ii) of the next theorem often, but if we are short on time we

might skip parts (iii) and (iv) since these are not used in what follows.

Theorem V.7.3. Let F be a finite dimensional extension field of K. Then for all

u, v ∈ F :

(i) NK
F (u)NK

F (v) = NK
F (uv) and TK

F (u) + TK
F (v) = TK

F (u + v);

(ii) if u ∈ K, then NK
F (u) = u[F :K] and TK

F (u) = [F : K]u;
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(iii) NK
F (u) and TK

F (u) are elements of K. More precisely, NK
F = ((−1)na0)

[F :K(u)] ∈

K and TK
F (u) = −[F : K(u)]an−1 ∈ K, where a0 and an−1 are determined by

f = xn + an−1x
n−1 + · · · + a1x + a0 ∈ K[x] is the irreducible polynomial of u;

(iv) if E is an intermediate field, then NK
E(NE

F (u)) = NK
F (u) and TK

E(TE
F (u)) =

TK
F (u).

Definition V.7.4. Let S be a nonempty set of automorphisms of a field F . S is

linearly independent provided that for any a1, a2, . . . , an ∈ F and σ1, σ2, . . . , σn ∈ S

we have

a1σ1(u) + a2σ2(u) + · · · + anσ(u) = 0 for all u ∈ F

implies that ai = 0 for all i.

Lemma V.7.5. If S is a set of distinct automorphisms of a field F , then S is

linearly independent.

Definition. An extension field F of a field K is said to be cyclic (respectively,

abelian) if F is algebraic and Galois over K and AutK(F ) is a cyclic (respectively,

abelian) group. If in this situation AutK(F ) is a finite cyclic group of order n, then

F is a cyclic extension of degree n (notice that [F : K] = n by the Fundamental

Theorem of Galois Theory, Theorem V.2.5 part (i)).
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Note. The next result gives some properties of cyclic extensions in terms of the

norm and trace.

Theorem V.7.6. Let F be a cyclic extension field of degree n, σ a generator of

AutK(F ) and u ∈ F . Then

(i) TK
F (u) = 0 if and only if u = v − σ(v) for some v ∈ F ;

(ii) (Hilbert’s Theorem 90) NK
F (u) = 1K if and only if u = vσ−1(v) for some

nonzero v ∈ F .

Note. The reference to Theorem V.7.6(ii) as “Hilbert’s Theorem 90” is based on

the fact that it was Theorem 90 of David Hilbert’s (1862–1943) Die Theorie der

algebraischen Zahlkörper in 1897. An English translation appears as The Theory

of Algebraic Number Fields in 1998 by Springer-Verlag. See page 105 in Chap-

ter 15, “Cyclic Extension Fields of Prime Degree,” Section 54, “Symbolic Powers.

Theorem on Numbers with Relative Norm 1.” However, the result was originally

shown by Ernst Kummer (1810–1893) in 1855 and published in 1861 (reprinted in

Kummer’s Collected papers. Volume 1: Contributions to Number Theory, edited

by André Weil, Springer-Verlag (1975), pages 699–839). A number of general-

izations exist, including in the settings of group cohomology (a generalization by

Emmy Noether) and Milnor K-Theory. (These comments are based on the website:

https://en.wikipedia.org/wiki/Hilbert’s Theorem 90, accessed 7/3/2015.)
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Note. We now use the results developed in this section to characterize some cyclic

field extensions.

Proposition V.7.7. Let F be a cyclic extension field of K of degree n and

suppose n = mpt where 0 6= p = char(K) and (m, p) = 1. Then there is a chain of

intermediate fields F ⊃ E0 ⊃ E1 ⊃ · · · ⊃ Et−1 ⊃ Et = K such that F is a cyclic

extension of E0 of degree m and for each 0 ≤ i ≤ t, Ei−1 is a cyclic extension of Ei

of degree p.

Note. Proposition V.7.7 allows us to reduce the analysis of cyclic extensions F of

degree n over K to just two cases:

(i) n = char(K) = p 6= 0 (in which case t = 0 in Proposition V.7.7), and

(ii) char(K) = 0 or char(K) = p 6= 0 and (p, n) = 1 (that is, char(K) - n).

The first case is treated next.

Proposition V.7.8. Let K be a field of characteristic p 6= 0. F is a cyclic

extension field of K of degree p if and only if F is a splitting field over K of an

irreducible polynomial of the form xp −x−a ∈ K[x]. In this case F = K(u) where

u is any root of xp − x − a.

Corollary V.7.9. If K is a field of characteristic p 6= 0 and xp − x − a ∈ K[x],

then xp − x − a is either irreducible of splits in K[x].
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Note. In the notation of Proposition V.7.7, we have that all fields F which are

cyclic extension fields of K where n = char(K) = p are splitting fields of irreducible

xp−x−a, and conversely (by Proposition V.7.8). This still leaves the classification

of cyclic extensions where either char(K) = 0 or hcar(K) = p 6= 0 and (p, n) = 1.

For this second classification we must introduce an additional assumption on field

K.

Definition. Let K be a field and n ∈ N. An element ζ ∈ K is an nth root of unity

if ζn = 1K (that is, ζ is a root of xn − 1K). ζ ∈ K is a primitive nth root of unity if

ζ is an nth root of unity and ζ has order n in the multiplicative group of nth roots

of unity. (Notice that a primitive nth root of unity generates the cyclic group of

all nth roots of unity.)

Example. For n ∈ N, the group of nth roots of unity in C is {e2kπi/n | k =

0, 1, 2, . . . , n − 1}. The primitive nth roots of unity in C are e2kπi/n where k and n

are relatively prime, (k, n) = 1. Of course, this multiplicative group is isomorphic

to the additive group Zn.
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Note. Roots of unity can be more abstract than the previous example might lead

us to believe. If char(K) = p and p | n then n = pkm with (p,m) = 1 and m < n

(by the Division Algorithm). Thus xn − 1K = (xm − 1K)pk

(by the Freshman’s

Dream, Exercise III.1.11). Consequently the nth roots of unity in K coincide with

the mth roots of unity in K. Since m < n there can be no primitive nth root of

unity in K (because all mth roots of unity are of order at most m).

Note. We need one final result before we classify cyclic extensions of fields which

contain nth roots of unity. The next result will also be used in the proof of Theorem

V.9.4 which concerns radical extensions and solvable groups.

Lemma V.7.10. Let n ∈ N and K a field which contains a primitive nth root of

unity ζ .

(i) If d | n, then ζn/d = η is a primitive dth root of unity in K.

(ii) If d | n and u is a nonzero root of xd − a ∈ K[x], then xd − a had d distinct

roots, namely u, ηu, η2u, . . . , ηd−1u, where η ∈ K is a primitive dth root of

unity. Furthermore K(u) is a splitting field of xd − a over K and is Galois

over K.

Note. The following result puts no condition on char(K), and so addresses the

second category of cyclic extensions. However, it does require the additional as-

sumption that K contains a primitive root of unity. The next result will be used in

the proof of Theorem V.9.4 which concerns radical extensions and solvable groups.
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Theorem V.7.11. Let n ∈ N and K a field which contains a primitive nth root of

unity ζ . Then the following conditions on an extension field F of K are equivalent.

(i) F is cyclic of degree d, where d | n;

(ii) F is a splitting field over K of a polynomial of the form xn − a ∈ K[x] (in

which case F = K(u), for any root u of xn − a);

(iii) F is a splitting field over K of an irreducible polynomial of the form xd − b ∈

K[x], where d | n (in which case F = K(v), for any root v of xd − b).

Note. Instead of viewing Theorem V.7.11 as a classification of cyclic extensions,

we could view it as a classification of splitting fields of polynomials of the form

xn − a (in terms of cyclic extensions in the setting of fields containing a primitive

root of unity). Without the presence of the primitive root this is “considerably

more difficult” (Hungerford, page 296). The content of the next section addresses

this question in the case when a = 1K .
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