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Section V.8. Cyclotomic Extensions

Note. In this section we explore splitting fields of xn − 1. The splitting fields

turn out to be abelian extensions (that is, algebraic Galois extensions with abelian

Galois groups). Theorem V.8.1 is used in the proof of Theorem V.9.4 (which is on

radical extensions and solvable groups), but the remainder of this chapter is not

needed for what follows and may be skipped if we are short on time.

Definition. A splitting field F over a field K of polynomial xn−1K ∈ K[x] (where

n ≥ 1) is a cyclotomic extension of order n.

Note. If char(K) divides n, say char(K) = p 6= 0 and n = mpt where gcd(p,m) =

(p,m) = 1 then by the Freshman’s Dream (Exercise III.1.11; we can also use the

Binomial Theorem, Theorem III.1.6, here)

(xm − 1)pt

= xmpt − 1pt

= xn − 1

and so a cyclotomic extension of order n coincides with one of order m. So we only

consider (without loss of generality) cases where char(K) does not divide n; that

is, cases where either char(K) = 0 or car(K) = p where (p, n) = 1).
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Recall. The Euler phi function is defined on N as ϕ(n) equals the number of

elements in the set {1, 2, . . . , n} which are relatively prime to n. For example,

for prime p, ϕ(p) = p − 1. In Exercise V.8.4 it is shown that the order of the

multiplicative group of units in Zn is ϕ(n) (recall that an element of a ring is a

“unit” if it has a multiplicative inverse).

Theorem V.8.1. Let n ∈ N, let K be a field such that char(K) does not divide

n, and let F be a cyclotomic extension of K of order n. Then the following hold.

(i) F = K(ζ) where ζ ∈ F is a primitive nth root of unity.

(ii) F is an abelian extension of dimension d where d | ϕ(n); if n is prime then F

is actually a cyclic extension.

(iii) AutK(F ) is isomorphic to a subgroup of order d of the multiplicative group

of units of Zn.

Note. The dimension of F over K in Theorem V.8.1 may be strictly less than

ϕ(n). For example, let ζ be a primitive 5th root of unity. Then [R(ζ) : R] = 2

(see Corollary V.3.20 and its proof; or find an irreducible second degree polynomial

in R[x] for which the primitive 4th root of unity is a root). But ϕ(5) = 4 and so

[R(ζ) : R] = 2 < 4 = ϕ(n).
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Definition. Let n ∈ N, let F be a field such that char(K) does not divide n, and let

F be a cyclotomic extension of order n of K. The nth cyclotomic polynomial over

K is the monic polynomial gn(x) = (x − ζ1)(x − ζ2) · · · (x − ζr) where ζ1, ζ2, . . . , ζr

are all the distinct primitive nth roots of unity in F .

Example. If K = Q, then the 1th root of unity is 1 (which is trivially a primitive

root) and so g1(x) = x − 1. The only primitive 2th root of unity is −1 and so

g2(x) = x − (−1) = x + 1. The primitive 3rd roots of unity are −1/2 + (
√

3/2)i

and −1/2 − (
√

3/2)i, so

g3(x) = (x − (−1/2 + (
√

3/2)i))(x − (−1/2 − (
√

3/2)i) = x2 + x + 1.

The primitive 4th roots of unity are i and −i, so g4(x) = (x − i)(x + i) = x2 + 1.

Since 5 is prime then all 5th roots of unity are primitive except x = 1, so

g5(x) =
x5 − 1

x − 1
= x4 + x3 + x2 + x + 1.

In general, if p is prime then similarly

gp(x) =
x5 − 1

x − 1
= xp−1 + xp−2 + · · ·x2 + x + 1.

Theorem V.8.2. Let n ∈ N, let K be a field such that char(K) does not divide n,

and let gn(x) be the nth cyclotomic polynomial over K. Then the following hold.

(i) xn − 1K =
∏

d|n gd(x).

(ii) The coefficients of gn(x) lie in the prime subfield P of K. If char(K) = 0 and

P is identified with the field Q of rationals, then the coefficients are actually

integers.

(iii) Deg(gn(x)) = ϕ(n) where ϕ is the Euler phi function.
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Note. By Theorem V.8.2(i) gives a recursive formula for gn:

gn(x) =
xn − 1K∏

d|n,d<n gd(x)
.

As previously observed, if p is prime then

gp(x) =
xp − 1K

g1(x)
=

xp − 1K

x − 1K

= xp−1 + xp−1 + · · · + x2 + x + 1.

Based on the example above with K = Q:

g6(x) =
x6 − 1

g1(x)g2(x)g3(x)
=

x6 − 1

(x − 1)(x + 1)(x2 + x + 1)
= x2 − x + 1,

and so

g12(x) =
x12 − 1

g1(x)g2(x)g3(x)g4(x)g6(x)

=
x12 − 1

(x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1)
= x4 − x2 + 1.

Note. If we take the base field as K = Q (of characteristic 0, of course) then we

can refine the previous results, as follows.

Proposition V.8.3. Let F be a cyclotomic extension of order n of the field Q

of rational numbers and gn(x) the nth cyclotomic polynomial over Q. Then the

following hold.

(i) gn(x) is irreducible in Q[x].

(ii) [F : Q] = ϕ(n) where ϕ is the Euler function.

(iii) AutQ(F ) is isomorphic to the multiplicative group of units in the ring Zn.
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Note. The Kronecker-Weber Theorem states that “Every abelian extension of Q

is contained in a cyclotomic extension of Q.” An “elementary proof” is given by M.

J. Greenberg in “An Elementary Proof of the Kronecker-Weber Theorem,” Amer-

ican Mathematical Monthly, 81(6), 601–607 (1974). However, this proof requires

results from ramification theory (a branch of commutative algebra). According to

Wikipedia (en.wikipedia.org/wiki/Kronecker-Weber theorem; accessed July 9,

2015), the result was first stated by Leopold Kronecker who gave an incomplete

proof in 1853. In 1886, Heinrich Martin Weber published a proof with some gaps

and errors. The first complete proof was given by David Hilbert in 1896.

Note. Returning to the topic of ruler and compass constructions (from the ap-

pendix to Section V.5.1), we can use our knowledge of cyclotomic extensions to give

necessary and sufficient conditions by which a regular n-gon can be constructed with

a ruler and compass. The conditions (which involve Fermat primes) were originally

shown to be necessary by Gauss. However, he did not show the conditions were

necessary. The problem was completely solved by Pierre Wantzel in 1837 and pub-

lished as “Recherches sur les moyens de reconnâıtre si un Problème de Géométrie

peut se résoudre avec la règle et le compas” in Journal de Mathématiques Pures et

Appliquées 1(2), 366-372. In this paper he also proved the impossibility of doubling

the cube and trisecting an angle. For more details, see my class notes based on

Fraleigh’s A First Course in Abstract Algebra, 7th edition:

http://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf and

http://faculty.etsu.edu/gardnerr/4127/notes/X-55.pdf
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