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Section V.9.Appendix.

The General Equation of Degree n

Note. The ancient city of Babylon was located in the southern part of Mesopotamia,

about 50 miles south of present day Baghdad, Iraq. Clay tablets containing a type

of writing called “cuneiform” survive from Babylonian times, and some of them re-

flect that the Babylonians had a sophisticated knowledge of certain mathematical

ideas, some geometric and some arithmetic. [Page 28 of Jason Socrates Bardi’s The

Fifth Postulate: How Unraveling a Two-Thousand-Year-Old Mystery Unraveled the

Universe, John Wiley & Sons: 2009.] An example of a Babylonian algebra problem

[see page 1 of Israel Kleiner’s A History of Abstract Algebra, Birkhäuser: 2007]

is the following: “I have added the area and two-thirds of the side of my square

and it is 0:35 [35/60 in sexagesimal notation]. What is the side of my square?”

The solution is given verbally, as opposed to what we would consider an alge-

braic solution. In our notation, this problem can be stated as: “Solve for x where

x2 + (2/3)x = 35/60.” The fact that the Babylonians could solve an equation of

this form implies that they could solve any equations of the form x2 +ax = b where

a > 0 and b > 0. This shows that the Babylonians were aware of the quadratic

equation. Of course, none of this would be done using equations and the Babyloni-

ans would not admit negative numbers as solutions (or as numbers—numbers were

thought of as quantities and so there was no meaning to a “negative quantity”).
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Note. Egyptian mathematics was centered more on practical, engineering-related

problems than on abstraction. This is evidenced by the Rhind papyrus from 1650

bce, which gives examples of problems that are basically arithmetical. Problem 21

asks for a solution to
2

3
+

1

15
+ x = 1. Much of the content deals with addition of

fractions of the form 1/n. Again, the Egyptians did not use a notation or numerical

symbols which we would recognize.

[http://www-history.mcs.st-and.ac.uk/HistTopics/Egyptian papyri.html]

Note. We now jump way ahead and pick up the story with cubic and quartic

equations.

Tartaglia (1500–1557) and Cardano (1501–1576)

(From MacTutor History of Mathematics)

Before the year 1500, the only general polynomial equations which could be

solved were linear equations ax = b and quadratic equations ax2 + bx + c = 0.

The use of negative numbers was still not widespread. Around 1515, the Italian

Scipione del Ferro was the first to give a solution to a (nontrivial) cubic equation

of the form ax3 + bx = c, though he never published the result. However, del
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Ferro did communicate the result to one of his students (Antonio Maria Fiore)

who challenged Niccolò Tartaglia to a public problem solving contest in 1535. Del

Ferro only knew how to solve equations of the type given above, but Tartaglia

knew how to solve many other types of cubic equations and easily won the contest

(and the 16th century equivalent of tenure). Tartaglia reluctantly communicated

his result to Gerolamo Cardano. Once he saw the solution, Cardano was able to

find a proof for it. At this point (the late 1530s), Ludovico Ferrari, a secretary

of Cardano’s, learned of the work and was able to find a solution to the quartic

equation in 1540 (Ferrari’s solution involved a substitution that reduced the quartic

equation to a cubic equation). In 1545, Cardano published Ars Magna (“The Great

Art”) in which he gave many details on the solutions of the cubic and quartic

equations (Tartaglia became enraged at the publication of the cubic result, and

this lead to a historical “battle” in the history of math between Tartaglia, del

Ferro, and Cardano—a similar battle occurred about 150 years later over priority

for the invention of calculus between Newton and Leibniz). The rapid discovery of

a solution to the quartic equation following the cubic equation lead those involved

to think that solutions of higher degree polynomial equations were on the horizon.

[see pages 66–77 of John Derbyshire’s Unknown Quantity: A Real and Imaginary

History of Algebra, Joseph Henry Press: 2006]

Cardano presents dozens of cases for the solutions of cubic and quartic equations.

This is due to the fact that negative numbers are still not accepted as “numbers.”

For example, Cardano would consider the cubic equations x3+2x = 3 and x3 = 4x+

5 to be from different “categories.” Of course, both are of the form ax3 +bx+c = 0

if we are allowed to use negative coefficients. So the notation used in the 16th
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century was not modern, but the solutions to the general equations were known.

For the sake of illustration, let’s look at the solution to the cubic equation

ax3 + bx2 + cx + d = 0 in modern notation. The three solutions are:

x1 = − b

3a
− 1

3a
3

√

1

2

(

2b3 − 9abc + 27a2d +
√

(2b3 − 9abc + 27a2d2)2 − 4(b2 − 3ac)3

)

− 1

3a
3

√

1

2

(

2b3 − 9abc + 27a2d −
√

(2b3 − 9abc + 27a2d2)2 − 4(b2 − 3ac)3

)

x2 = − b

3a
+

1 +
√
−3

6a
3

√

1

2

(

2b3 − 9abc + 27a2d +
√

(2b3 − 9abc + 27a2d2)2 − 4(b2 − 3ac)3

)

+
1 −

√
−3

6a
3

√

1

2

(

2b3 − 9abc + 27a2d −
√

(2b3 − 9abc + 27a2d2)2 − 4(b2 − 3ac)3

)

x3 = − b

3a
+

1 −
√
−3

6a
3

√

1

2

(

2b3 − 9abc + 27a2d +
√

(2b3 − 9abc + 27a2d2)2 − 4(b2 − 3ac)3

)

+
1 +

√
−3

6a
3

√

1

2

(

2b3 − 9abc + 27a2d −
√

(2b3 − 9abc + 27a2d2)2 − 4(b2 − 3ac)3

)

Note. Of particular historical interest is the impact these equations have had

on the acceptance of complex numbers. If we consider the cubic equation x3 −

15x − 4 = 0 [Kleiner, page 7] then we find from the above equations that one

solution is x =
3

√

2 +
√
−121 +

3

√

2 −
√
−121. This equation can be manipulated

by the “usual” algebraic rules with disregard for the fact that
√
−121 makes no

sense by 16th century standards. The expression then reduces to x = 4 (notice

(4)3 − 15(4) − 4 = 64 − 60 − 4 = 0). So the equations above give a meaningful

positive solution, even though computation of the solution involves the use of square

roots of negatives. This application is where complex numbers gained a hold and

eventually became a standard part of “numbers” and mathematics (though not

until the 19th century, greatly motivated by Gauss’s work). In fact, it is also as

solutions to algebraic equations where negative numbers initially gained acceptance.
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Note. We now return to Hungerford’s approach. Not surprisingly, we want to

couch the classical algebraic formula question in the lingo of fields and radical

extensions.

Note. We start with a base field K (classically taken to be Q) then consider the

field of rational functions K(t1, t2) (see Section III.4 and page 233) in indeterminates

t1 and t2. then for the second degree monic polynomial x2 − t1x + t2 ∈ K(t1, t2)[x]

yields the general quadratic equation over K, x2−t1x+t2 = 0. Any monic quadratic

equation over K can be generated by taking appropriate values of t1 and t2. Of

course, the solutions to the general quadratic equation (which are in some algebraic

closure of K(t1, t2)) are

x =
t1 ±

√

t2
1
− 4 · t2

2 · 1K

.

These solutions can be confirmed y simply substituting them into the general

quadratic equation. Notice that the solutions are in K(u) where u2 = t2
1
− 4t2

2

(so K(u) is a radical extension of K). Exercise V.9.5 states a concise version of

“Cardan’s solutions” (more correctly, “Cardano’s Solutions”) to the general cubic

equation; these can also be confirmed by substitution (and lots of classical algebra).

Definition. Let K be a field and n ∈ N. consider the field K(t1, t2, . . . , tn) of

rational functions over K in the indeterminates t1, t2, . . . , tn. The polynomial

pn(x) = xn − t1x
n−1 + t2x

n−2 + · · · + (−1)n−1tn−1x + (−1)ntn ∈ K(t1, t2, . . . , tn)[x]

is the general polynomial of degree n over K and the equation pn(x) = 0 is the

general equation of degree n over K.
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Definition. There is a (algebraic) formula for the solution of the general equation

of degree n over K provided that this equation is solvable by radicals over the fields

K(t1, t2, . . . , tn).

Note. We have defined things such that we address the existence of a general

formula. We have seen in Section V.9 that x5 − 4x + 2 = 0 is not solvable by

radicals (over Q). Of course some quintics can be solved by radicals. So there is

no formula for the solutions to the general quintic equations can be easily solved.

Consider, for example, x5 − 2x4 + 2x3 − 2x2 + x = 0. We have:

x5−2x4+2x3−2x2+x = x(x4−2x3+2x2−2x+1) = x((x4−2x3+x2)+(x2−2x+1))

= x(x2 + 1)(x2 − 2x + 1) = x(x − i)(x + i)(x − 1)2,

so the solutions are 0, i, −i, 1, and 1.

Proposition V.9.8. Abel’s Theorem.

Let K be a field and n ∈ N. The general equation of degree n is solvable by radicals

only if n ≤ 4.

Note. If char(K) = 0 then we can replace “only if” with “if and only if.” This is

because Sn is solvable for n ≤ 4 by Exercise II.7.10, and then the claim is justified

by Corollary V.9.7.
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Note. We can also change “only if” to “if and only if” in the case when char(K) = 6=
0 by revising the definition of “radical extension.”

Alternate Definition. Let K be a field of characteristic p 6= 0. F is a radical

extension of K if there is a finite tower of fields K = E0 ⊂ E1 ⊂ · · · ⊂ En = F such

that for 1 ≤ i ≤ n, Ei = Ei−1(ui) and one of the following is true: (i) umi

i ∈ Ei−1

for some mi ∈ N, or (ii) up − u ∈ Ei−1.

This claim is to be justified in Exercise V.9.2.

Note. We now present several results which are exercises in Fraleigh’s A First

Course In Abstract Algebra, 7th Edition. These exercises will give us a way to

produce specific polynomials for which there is no (algebraic) formula generating

the roots.

Fraleigh’s Exercise 56.8(a). Prove that if a subgroup H of S5 contains a cycle

of length 5 and a transposition τ , then H = S5. NOTE: This is a generalization of

Hungerford’s Exercise I.6.4(a).

Proof. Without loss of generality, let the 5 cycle be (1, 2, 3, 4, 5) and let the

transposition be τ = (1, 2). Since H is a group, it contains the following elements

(remember to perform the multiplication from right to left):

(1, 2, 3, 4, 5)(1, 2)(1, 2, 3, 4, 5)4 = (1)(2, 3)(4)(5) = (2, 3)

(1, 2, 3, 4, 5)2(1, 2)(1, 2, 3, 4, 5)3 = (1)(2)(3, 4)(5) = (3, 4)

(1, 2, 3, 4, 5)3(1, 2)(1, 2, 3, 4, 5)2 = (1)(2)(3)(4, 5) = (4, 5)

(1, 2, 3, 4, 5)4(1, 2)(1, 2, 3, 4, 5) = (1, 5)(2)(3)(4) = (1, 5)
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So H contains the transpositions (1, 2), (2, 3), (3, 4), (4, 5) and (5, 1). Let a, b ∈
{1, 2, 3, 4, 5} where a < b. Then

(a, b) = (a + 1, a)(a + 2, a + 1) · · · (b − 2, b − 3)(b − 1, b − 2)(b − 1, b)(b − 2, b − 1)

· · · (a + 1, a + 2)(a, a + 1).

So H must contain all transpositions. By Corollary I.6.5, any permutation of

{1, 2, 3, 4, 5} of at least two elements (that is, excluding the identity permutation)

is a product of transpositions. Since H includes all transpositions (and the identity)

then it must contain all permutations of {1, 2, 3, 4, 5}. That is, H = S5.

Fraleigh’s Exercise 56.8(b). Prove that if f(x) is an irreducible polynomial in

Q[x] of degree 5 having exactly two complex and three real zeros, then the group

of f(x) over Q is isomorphic to S5.

Proof. Let f(x) be such a degree 5 polynomial over Q and let K be the splitting

field of f(x) over Q. Notice that WLOG, f(x) can be monic. By Theorem V.4.2(i),

AutQ(K) is isomorphic to some subgroup of S5.

Let α be a zero of f(x). Then by Theorem V.1.6 (parts (ii) and (iii)), [Q(α) :

Q] = 5. By Theorem V.1.2, [K : Q] = [K : Q(α)][Q(α) : Q]. So 5 divides [K : Q].

Since f(x) is of degree 5 and has exactly 5 roots (that is, 5 distinct roots) then

f(x) is a separable polynomial (Definition V.3.10). By Theorem V.3.11 (the (iii)

implies (i) part) then K is algebraic and Galois over Q. By the Fundamental

Theorem of Galois Theory (Theorem V.2.5(i)), [K : Q] = |AutQ(K)|. So 5 divides

|AutQ(K)|. By Cauchy’s Theorem (Theorem II.5.2) AutQ(K) has an element of

order 5. The only elements of order 5 in S5 are 5 cycles, so AutQ(K) contains (up

to isomorphism, at least) a 5 cycle.



V.9.Appendix. The General Equation of Degree n 9

Now suppose a+ ib is a zero of f(x). Then a− ib is also a zero of f(x) (complex

zeros of real polynomials must come in conjugate pairs). The automorphism σ of

field C defined as σ(1) = 1 and σ(i) = −i induces an automorphism of K which fixes

Q and satisfies σ(a + ib) = a − ib (this is σ restricted to K). Then this restriction

of σ is in AutQ(K) and σ2 = ι, so σ (up to isomorphism) is a transposition in S5.

So AutQ(K) ≤ S5 contains a transposition and a 5 cycle. By Fraleigh’s Exercise

56.8(a), AutQ(K) ∼= S5.

Fraleigh’s Exercise 56.8(c). The polynomial f(x) = 2x5 − 5x4 + 5 is irreducible

in Q[x], by the Eisenstein Criterion (Theorem III.6.15) with p = 5. Use Fraleigh’s

Exercise 56.8(b) and by the contrapositive of Corollary V.9.5, to show that f(x) = 0

is not solvable by radicals over Q.

Solution. Notice that f ′(x) = 10x4 − 20x3 = 10x3(x − 2), so f ′(x) = 0 for

x = 0 and x = 2. We find by the First Derivative Test that f(x) is increasing for

x ∈ (−∞, 0] ∪ [2,∞) and f(x) is decreasing for x ∈ [0, 2]. Since f(0) = 4 > 0 and

f(2) = −11 < 0, the graph of f(x) is something like:



V.9.Appendix. The General Equation of Degree n 10

Notice that f(x) is unbounded below for x < 0 and unbounded above for x > 0.

So (by the Intermediate Value Theorem), f has a real zero in (−∞, 0), a real zero

in (0, 2), and a real zero in (2,∞). Notice that each of these zeros is of multiplicity

1 (since the derivative is nonzero at these values, whatever they are). So f(x) has

three distinct real zeros and (by the Fundamental Theorem of Algebra [Theorem

31.18]) two complex zeros. So by Fraleigh’s Exercise 56.8(b), the Galois group of

f(x) over Q is S5. Now S5 is not solvable by Corollary II.7.12. Hence, by the

contrapositive of Corollary V.9.5, the equation f(x) = 0 is not solvable by radicals

over Q.

Fraleigh’s Exercise 56.9. Find another example of a polynomial over Q which

is not solvable by radicals over Q (don’t just give a multiple of the example of

Fraleigh’s Exercise 56.8(c)). Use the Eisenstein Criterion to show that your example

is in fact irreducible (and give p) and use calculus to show that your example has

three real zeros and two complex zeros and then follow Fraleigh’s Exercise 56.8(c).

Solution. Consider f(x) = x5 − 7x4 + 7. Then f(x) is irreducible by the

Eisenstein Criterion (Theorem III.6.15) with p = 7. Also, f ′(x) = 5x4 − 28x3 =

x3(5x− 28). So f ′(x) = 0 for x = 0 and x = 28/5. We find by the First Derivative

Test that f(x) is increasing for x ∈ (−∞, 0] ∪ [28/5,∞) and f(x) is decreasing for

x ∈ [0, 28/5]. Since f(0) = 7 > 0 and f(28/5) = −1067 − (1842/3125) < 0 (now

you see why Fraleigh chose to use p = 5).

As in Fraleigh’s Exercise 56.8(c), we have that f(x) is unbounded below for

x < 0 and unbounded above for x > 0. So (by the Intermediate Value Theorem),

f has a real zero in (−∞, 0), a real zero in (0, 28/5), and a real zero in (28/5,∞).
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Notice that each of these zeros is of multiplicity 1 (since the derivative is nonzero

at these values, whatever they are). So f(x) has three distinct real zeros and (by

the Fundamental Theorem of Algebra [Theorem V.3.19]) two complex zeros. So by

Fraleigh’s Exercise 56.8(b), the Galois group of f(x) over Q is S5. Now S5 is not

solvable by Corollary II.7.12. Hence, by the contrapositive of Corollary V.9.5, the

equation f(x) = 0 is not solvable by radicals.

Note. A similar analysis (with even messier numbers) reveals that f(x) = x5 −
4x + 2 is also an example of such a polynomial (see Hungerford’s page 276).

Note. A more general result related to Fraleigh’s Exercise 56.8 is the following

from Section V.4:

Theorem V.4.12. If p is prime and f is an irreducible polynomial of

degree p over Q which has precisely two nonreal roots in the field of

complex numbers, then the Galois group of f is isomorphic to Sp.

Since Sn is not solvable for n ≥ 5, then Hungerford’s theorem gives a potential way

to produce more (prime degree) polynomials which are not solvable by radicals. For

example, with f(x) = x7−4x6−14x5 +56x4 +48x3−196x2 −36x+202 we see that

f is irreducible by the Eisenstein Criterion (Theorem III.6.15) with p = 2. One

can verify numerically that f has five real roots (approximately −3.046, −1.765,

−1.290, 3.105, and 4.005) and two complex roots (approximately 1.495 ± 0.326i).

So, if you will accept the impurity of a numerical approximation, this is an example

of a 7th degree polynomial equation (a “septic” equation) where the polynomial has

associated Galois group S7 and, therefore, the equation is not solvable by radicals.
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