
V.9. Radical Extensions 1

Section V.9. Radical Extensions

Note. In this section (and the associated appendix) we resolve the most famous

problem from classical algebra using the techniques of modern algebra (in fact,

this is why the techniques of modern algebra were originally developed!). The

idea is to find an algebraic formula for the solution of a polynomial equation (an

extension of the concept of the quadratic equation for the solutions of a second

degree polynomial equation to general nth degree polynomial equations). By an

“algebraic formula” we mean a formula based on addition/subtraction, multiplica-

tion/division, and extraction of roots.

Note. The extraction of an nth root of an element c in a field E is equivalent to

constructing an extension field E(u) where un = c ∈ E. So solving the polynomial

equation f(x) = 0 algebraically implies the existence of a finite tower of fields K =

E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En such that En contains a splitting field of f over K and

for i ≥ 1, Ei = Ei−1(ui) where some ni ∈ N yields uni

i
∈ Ei−1. Conversely, if there is

a tower of fields K = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En where En contains a splitting field

of f then En = K(u1, u2, . . . , un) where the ui are as above and so each solution of

the polynomial equation is of the form f(u1, u2, . . . , un)/g(u1, u2, . . . , un) for f, g ∈
K[x1, x2, . . . , xn] by Theorem V.1.3(v). That is, each solution is expressible in

terms of a finite number of elements in K, a finite number of field operations,

and u1, u2, . . . , un (which are obtained by extracting roots of order n1, n2, . . . , nn of

u1, u2, . . . , un respectively). Thus we have the following definition.
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Definition V.9.1. An extension field F of a field K is a radical extension of K if

F = K(u1, u2, . . . , un) where some power of u1 lies in K and for each i ≥ 2, some

power ni ∈ N of ui lies in K(u1, u2, . . . , ui−1).

Note. With uni

i
∈ K(u1, u2, . . . , ui−1) we have that ui is a root of xni − uni

i
∈

K(u1, u2, . . . , ui−1)[x]. By Theorem V.1.12 (with X = {ui}) we have that K(u1, u2, . . . , ui)

is algebraic and finite dimensional over K(u1, u2, . . . , ui−1). By Theorem V.1.2,

K(u1, u2, . . . , un) is finite dimensional over K and so by Theorem V.1.11, K(u1, u2, . . . , un)

is algebraic over K.

Definition V.9.2. Let K be a field and f ∈ K[x]. The equation f(x) = 0 is

solvable by radicals if there exists a radical extension F of K and a splitting field

E of f over K such that F ⊃ E ⊃ K.

Note. Since F is a radical extension of K, then every element of F can be expressed

“in terms of extraction of roots” and the field operations applied to the elements

of K. Since E is a splitting field of f over K, then all roots of f(x) = 0 are in F .

Notice that the splitting field itself is not required to be a radical extension.
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Note. The following three results set the stage for demonstrating the unsolvability

of the quintic. Before stating these results, recall that the normal closure of field

E over field K is the field E with the properties given in Theorem V.3.16:

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an

extension field F of E such that:

(i) F is normal over K;

(ii) No proper subfield of F containing E is normal over K;

(iii) If E is separable over K, then F is Galois over K;

(iv) [F : K] is finite if and only if [E : K] is finite.

Lemma V.9.3. If F is a radical extension of K and N is a normal closure of F

over K (see Theorem V.3.16 on page 265), then N is a radical extension of K.

Recall. For group G, the subgroup of G generated by the set {aba−1b−1 | a, b ∈ G}
is called the commutator subgroup of G and denoted G′ = G(1). For i ≥ 2 define

G(i) = (G(i−1))′ (that is, G(i) is the commutator subgroup of G(i−1)). G(i) is the

ith derived subgroup of G. Group G is solvable if G(n) = 〈e〉 for some n. That is,

G is solvable if the sequence of derived subgroups of G is of the form G > G(1) >

G(2) > · · · > G(n) = 〈e〉. These definitions are from Section II.7. The next result,

concerning solvable groups, is a giant step towards both Galois’ and Abel’s results

concerning the algebraic solvability of polynomial equations.



V.9. Radical Extensions 4

Theorem V.9.4. If F is a radical extension field of K and E is an intermediate

field, then AutK(E) is a solvable group.

Note. The following corollary ties together solvable polynomial equations and

solvable groups.

Corollary V.9.5. Let K be a field and f ∈ K[x]. If the equation f(x) = 0 is

solvable by radicals, then the Galois group of f is a solvable group.

Note/Example. We can use the contrapositive of Corollary V.9.5 to show the

nonsolvability of certain polynomial equations. Hungerford considers f = x5−4x+

2 ∈ Q[x] which has Galois group S5 (see page 276). Since S5 is not solvable by

Corollary II.7.12, then the equation x5 −4x+2 = 0 is not solvable by radicals over

Q. In the appendix to this section, we will explore other examples of unsolvable

quintics over Q.

Note. We must be clear about the field of coefficients for a polynomial when

addressing the solvable by radicals question. For any f ∈ R[x], we have that C is

a radical extension of R since C = R(i) and so the splitting field of f is either R or

C by Corollary V.3.20. We know that AutR(R) = {ι} and AutR(C) ∼= Z2 and so

the Galois polynomial of f is solvable in both cases. To connect this to equations

involving radicals, notice that all roots of f(x) = 0 are of the form a+ b
√
−1 where

a, b ∈ R (by the Fundamental Theorem of Algebra, Theorem V.3.19).
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Note. The next proposition is a partial converse to Theorem V.9.4 (some restric-

tions are imposed when char(K) is finite). The corollary to this proposition is

the major result of Évariste Galois on the “algebraic” solvability of polynomial

equations.

Proposition V.9.6. Let E be a finite dimensional Galois extension field of K with

solvable Galois group AutK(F ). Assume that char(K) does not divide [E : K].

Then there exists a radical extension F of K such that F ⊃ E ⊃ K.

Note. The following result is Galois’ big theorem on solvability of polynomial

equations. We discuss the historical setting of this result after the proof.

Corollary V.9.7. Galois’ Theorem. Let K be a field and f ∈ K[x] a polynomial

of degree n > 0, where char(K) does not divide n! (which is always true when

char(K) = 0). Then the equation f(x) = 0 is solvable by radicals if and only if the

Galois group of f is solvable.

Note. The Note/Example following Corollary V.9.5 is sufficient to establish the

classical version of the “unsolvability of the quintic” problem (that is, the prob-

lem in the setting of finding a formula for the solution of the general 5th degree

polynomial equation with real coefficients and expressing the roots in terms of

addition, multiplication, and extraction of roots). For more information on the

history of algebraic solutions of 2nd, 3rd, and 4th degree polynomial equations,
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see the introductory online class notes for Introduction to Modern Algebra at:

http://faculty.etsu.edu/gardnerr/4127/notes/Why-am-I-here.pdf.

Note. Between around 1550 and 1800, there were a number of mathematicians

working on solving polynomial equations of degree 5. Prominent names are Rafael

Bombelli (Italian), François Viéte (French), James Gregory (Scottish), Ehrenfried

Walther von Tschirnhaus (German), Étienne Bézout (French), Leonhard Euler

(Switzerland), Erland Samuel Bring (Sweden), and Joseph-Louis Lagrange (French)

[John Derbyshire, Unknown Quantity: A Real and Imaginary History of Algebra,

Joseph Henry Press: 2006, pages 79–83].

In 1799 Italian Paola Ruffini published a two volume work titled General Theory

of Equations in which he included a “proof” that the quintic could not be alge-

braically solved. The proof ran 516 pages [Derbyshire, pages 87 and 88]. However,

Ruffini’s proof has been judged incomplete. The problem was that Ruffini lacked

sufficient knowledge of field theory, a topic initially developed in the early 19th

century [Israel Kleiner, A History of Abstract Algebra, Birkhäuser: 2007, page 63].

A correct proof that the quintic cannot be algebraically solved was given by

the Norwegian Niels Henrik Abel in 1821 (Abel was not aware of Ruffini’s alleged

proof). Abel was plagued by poverty and in order to save money, he published

his result in French in a six page pamphlet which was not widely circulated. Abel

died in poverty in 1829 [Derbyshire, pages 96–99]. His work has been expanded

and he is now viewed as one of the founders of modern algebra. As we have seen in

Corollary V.9.5, if a polynomial equation f(x) = 0 is solvable by radicals then the

Galois group of f is a solvable group. That is, the Galois group of f has a solvable
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series (Theorem II.8.5) and so (by definition of “solvable series,” Definition II.8.3)

the factor groups of a subnormal series of the Galois group of f has associated

factor groups which are abelian. Historically, this is why commutative groups are

called “abelian.”

Abel (1802–1829) and Galois (1811–1832)

(From MacTutor History of Mathematics)

Note. Abel died at the age of 26. The other prominent figure in the history of

algebra from the early 1800s also died very young. The Frenchman Évariste Galois

was born in 1811 and died in a dual in 1832 at the age of 20. He published five

papers in 1829–30 (two appearing after his death). Galois gave the conditions under

which a polynomial equation f(x) = 0 can be solved by radicals (regardless of the

degree of the polynomial). His result, in modern terminology, is our Corollary

V.9.7.

The mathematical community was slow to accept Galois’ result. In 1846, Joseph

Liouville published the result, but it only became widely known in the 1870s, follow-

ing Camille Jordan’s publication of Galois’ result (expanded and updated) in Traité
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des substitutions et des équations algebraique. Today, Galois Theory is a large area

of modern mathematics (the American Mathematical Society even includes Galois

Theory as a distinct area of mathematics, which they encode as “11R32”). For more

historical details on Galois and his life, see http://faculty.etsu.edu/gardnerr/

Galois/Galois200.htm (this is a website and presentation I prepared for the bi-

centennial of Galois’ birth). In a real sense, Galois, along with Abel, are the ones

who gave birth to the modern algebra we study as undergraduates and graduates.

Their work on polynomial equations from classical algebra lead to the study of the

areas of groups, rings, fields, and extension fields.

Note. We should comment that, just because an equation is not solvable by

radicals, that does not mean that the equation is not solvable by other techniques.

The general (monic) quintic equation x5 + a1x
4 + a2x

3 + a4x + a5 = 0 can be

“transformed” into the Bring-Jerrard quintic equation of the form y5−A4y+A5 = 0

by using the Tschirnhaus transformation, named after Ehrenfried von Tschirnhaus

(1651-1708) (for details on the transformation process, see pages 51–54 of R. Bruce

King’s Beyond the Quartic Equation, Boston: Birkhäuser, 1996). However, as

shown by the Note/Example above, this type of equation is not in general solvable

by radicals. In 1858, Charles Hermite (1822-1901) proved that the Bring-Jerrard

equations can be solved in terms of elliptic functions (in his “Sur la résolution

de l’équation du cinquième degré,” Comptes Rendus de l’Académie des Sciences

XLVI(I): 508-515). For details on the technique, see Alvin Hausner’s “The Bring-

Jerrard Equation and Weierstrass Elliptic Functions, The American Mathematical

Monthly, 69(3), 1962, 193–196 (though this reference requires some previous knowl-
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edge of elliptic functions). This is the historical approach, but there are alternate

approaches to the problem (all using elliptic functions); see Chapter 6 of Beyond

the Quartic Equation. In fact, the Wolfram software company (the developers of

Mathematica) have a poster which explains the history and mathematics of this

analytic approach (as opposed to a purely algebraic approach) to solving a quintic

(Google “wolfram quintic poster” for details).
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