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Part VII. Linear Algebra

Note. In this chapter, we present several of the topics covered in sophomore

Linear Algebra (MATH 2010), but in a much more general setting. The role of fi-

nite dimensional vector spaces are replaced with free modules and matrices (which

represent linear transformations in linear algebra) are related (isomorphic) to ho-

momorphisms between free modules.

Section VII.1. Matrices and Maps

Note. In this section, we define matrices with entries in a ring and show that

all matrices of the same size form an R-R bimodule (in Theorem 1.1), and that a

homomorphism between free (left) modules is isomorphic to matrix mapping one

module to the other (in Theorem 1.2). We define equivalent matrices and relate

them to homomorphism of free (left) modules in terms of different bases of the

modules (see Theorem 1.6).

Definition. Let R be a ring. An array of elements of the form

A =



a11 a12 a13 · · · a1m

a21 a22 a23 · · · a2m

a31 a32 a33 · · · a3m

...
...

... . . . ...

an1 an2 an3 · · · anm


,

with aij ∈ R, n rows, and m columns, is a n×m matrix over R. An n× n matrix

is a square matrix. We denote matrix A as (aij) where aij is the entry in the ith

https://faculty.etsu.edu/gardnerr/2010/notes.htm
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row and jth column of A. Two n×m matrices (aij) and (bij) are equal if aij = bij

in R for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. The elements a11, a22, a33, . . . form the main

diagonal of (aij). An n × n matrix with aij = 0 for i 6= j is a diagonal matrix.

If R has an identity element 1R, then the identity matrix In is the n × n diagonal

matrix with 1R in each entry on the main diagonal; that is, In = (δij) where δ is

the Kronecker delta. The n ×m matrices with all entries 0 are the zero matrices.

The set of all n×n matrices over R is denoted Matn(R). The transpose of an n×m

matrix A = (aij) is the m×n matrix At = b)ij such that bij = aji for all 1 ≤ i ≤ n

and 1 ≤ j ≤ m.

Note. We next define the familiar algebraic structure on the set of all n × m

matrices.

Definition. If A = (aij) and B = (bij) are n ×m matrices, then the sum A + B

is defined to be the n × m matrix C = (cij), where cij = aij + bij. If A = (aij)

is an m × n matrix and B = (bij) is an n × p matrix then the product AB is the

m × p matrix C = (cij) where cij =
∑n

k=1 aikbkj. If A = (aij) is an n ×m matrix

and r ∈ R then rA is the n×m matrix (raij) and Ar is the n×m matrix (aijr).

The matrix rIn is a scalar matrix.

Note. The previous two definitions contain nothing that you don’t see in sopho-

more Linear Algebra (MATH 2010), except for the need to deal with scalar mul-

tiplication of a matrix on the left and the right (due to the fact that we do not
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assumer commutativity of multiplication). If ring R is commutative, then products

and transposes interact in the usual way, (AB)t = BtAt, but this may not be the

case if R is noncommutative, as is to be shown in Exercise VII.1.1.

Note. Recall from Section IV.4. Hom and Duality that for rings R and S, an

abelian group A is an R-S bimodule if A is both a left R-module, a right S-module,

and r(as) = (ra)s for all a ∈ A, r ∈ R, s ∈ S. We leave the proof of the follwing as

Exercise VII.1.A.

Theorem VII.1.1. If R is a ring, then the set of all n × m matrices over R

forms an R-R bimodule under addition, with the n×m zero matrix as the additive

identity. Multiplication of matrices, when defined, is associative and distributive

over addition. For each n > 0, Matn(R) is a ring. If R has an identity, so does

MATn(R) (namely, the identity matrix In).

Note. For the remainder of this section, we assume that all rings have

an identity. We will need an identity matrix and hence an identity in R.

Note. Before proving the next theorem, it might be a good idea to review the ideas

of an ordered basis and a coordinate vector relative to an ordered basis. See my

online notes for Linear Algebra (MATH 2010) on Section 3.3. Coordinatization of

Vectors. These ideas are essential for proving the Fundamental Theorem of Finite

Dimensional Vector Spaces (see Theorem 3.3.A in the Linear Algebra notes).

https://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
https://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
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Theorem VII.1.2. Let R be a ring with identity. Let E be a free left R-module

with a finite basis of n elements and F a free left R-module with a finite basis of

m elements. Let M be the left R-module of all n×m matrices over R. Then there

is an isomorphism of abelian groups establishing that HomR(E, F ) ∼= M . If R is

commutative this is an isomorphism of left R-modules.

Definition. Let R be a ring with identity, E a free left R-module with basis

U = {u1, u2, . . . , un}, F a free left R-module with finite basis V = {v1, v2, . . . , vm},

M be the left R-module of all n×m matrices over R, and additive homomorphism

β : HomR(E, F ) → M mapping f 7→ A where A is the n×m matrix (rij) where the

rij are the coefficients in the system of equations in the proof of Theorem VII.1.2

(see also below). The n ×m matrix (rij) = β(f) is the matrix of homomorphism

f ∈ HomR(E, F ) relative to the ordered bases U of E and V of F . When E = F

and U = V , (rij) = β(f) is the matrix of the endomorphism f relative to the

ordered basis U .

Note. The system of equations in the proof of Theorem VII.1.2 is

f(u1) = r11v1 + r12v2 + · · ·+ r1mvm

f(u2) = r21v1 + r22v2 + · · ·+ r2mvm

...

f(un) = rn1v1 + rn2v2 + · · ·+ rnmvm.

So the ith row of rij = β(f) consists of the coefficients of f(ui) ∈ F relative to the

ordered basis {v1, v2, v3, . . . , vm}
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Note.
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