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Chapter VIII. Commutative Rings

and Modules

Section VIII.1. Chain Conditions

Note. This chapter serves as an introduction to commutative algebra. In this first

section, however, we consider rings that may not be commutative and may not

have identity. This section is necessary for a study of arbitrary rings, as given in

Chapter IX, “The Structure of Rings.”

Note. Recall that, informally, a module is like a vector space where the scalars

come from a ring and the vectors come from an abelian group (see Definition

IV.1.1).

Definition VIII.1.1. A module A satisfies the ascending chain condition (ACC)

on submodules if for every chain A1 ⊂ A2 ⊂ A3 ⊂ · · · of submodules of A, there

is n ∈ N such that Ai = An for all i ≥ n. Such a module is called Noetherian.

A module B satisfies the descending chain condition (DCC) on submodules if for

every chain B1 ⊃ B2 ⊃ B3 ⊃ · · · of submodules o fB, there is m ∈ N such that

Bi = Bm for all i ≥ m. Such a module is also called Artinian.

Note. The previous definitions of ACC and DCC for modules is very similar to

the definitions of ACC and DCC, respectively, for groups (though for groups, the

chains are of normal subgroups, not simply groups); see Definition II.3.2.
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Example. Notice that the additive group Z is a Z-module (where the scalars are

form ring Z and the vectors are from additive group Z). As shown in Exercise

II.3.5, Z satisfies the ACC but not the DCC. That is, Z is Noetherian but not

Artinian.

Example. Recall the additive abelian group Z(p∞) = Q/Z, the group of rationals

modulo one or the Prüfer group, from Section I.1. This is also a Z-module (where

the scalars are from ring Z and the vectors are from additive abelain group Z(p∞)).

As shown in Exercise II.3.13, Z(p∞) satisfies the DCC but not he ACC That is,

Z(p∞) is Artinian but not Noetherian.

Note. We now shift from chain conditions on modules to chain conditions on rings.

To do so, we consider ring R as a left (or right) module over itself. So both the

vectors and scalars come from R. Then if R′ is a submodule of module R then R′

must be an R-module itself. That is, for any scalar r ∈ R and any vector s ∈ R′

we must have rs ∈ R′ in the case of R as a left R-module, or sr ∈ R′ in the case

of R as a right R-module. So with this interpretation, we see that the submodules

are in fact ideals of R (see Definition III.2.1 for left ideal and right ideal). Recall

from Section III.2 that ideals are to rings as normal subgroups are to groups; see

Theorem III.2.7 for motivation of this comment. So given this observation and the

definitions of ACC and DCC for groups (Definitions II.3.2), the following definition

is well-motivated.
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Definition VIII.1.2. A ring R is left (respectively, right) Noetherian if R satisfies

the ascending chain condition on left (respectively, right) ideals. R is Noetherian

if R is both left and right Noetherian. A ring is left (respectively, right) Artinian

if R satisfies the descending chain condition on left (respectively, right) ideals. R

is Artinian if R is both left and right Artinian.

Note. Most of the results related to ACC and DCC in this section are stated in

terms of modules, but by the previous definition these results also apply to rings.

Example. By Exercise III.2.7, ring R with identity is a division ring if and only

if R has no proper left (or right) ideals. So the only ascending chain for division

ring D is {0} ⊂ D and the only descending chain is D ⊃ {0}. So a division ring is

both Noetherian and Artinian.

Example. By Lemma III.3.6, if R is a principal ideal ring and (a1) ⊂ (a2) ⊂

(a3) ⊂ · · · is a chain of (principal) ideals in R, then for n ∈ N, (aj) = (an) for all

j ≥ n. If R is a commutative ring then each left ideal is also a right ideal (or simply

an ideal) and so for commutative principal ideal ring R we see that R satisfies the

ACC and so is Noetherian. Now Z and Zm are commutative principal ideal rings

(by Exercises III.2.20(1) and (c)), so Z and Zm are Noetherian. By Exercise III.5.A,

if F is a field then F [x] is a principal ideal domain and so F [x] is Noetherian.
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Example. We’ll see in Corollary VIII.1.12 that if D is a division ring, then the

ring Matn(D) of all n × n matrices over D is both Artinian and Noetherian.

Note. In Exercise VIII.1.1(a), it is to be shown that a subring of mat2(Q) is right

Noetherian but not left Noetherian. In Exercise VIII.1.1(b), it is to be shown that

a subring of Mat2(R) is right Artinian but not left Artinian. We mentioned above

(based on Exercise II.3.5) that Z is Noetherian but not Artinian. In Exercise

IX.3.13 it is to be shown that every left (respectively, right) Artinian ring with

identity is left (respectively right) Noetherian.

Note. Recall from Section 0.7, “The Axiom of Choice, Order, and Zorn’s Lemma,”

that if ≤ is a partial ordering on set A (so that ≤ is reflexive, transitive, and

antisymmetric) then a, b ∈ A are comparable if either a ≤ b or b ≤ a.

Definition. Let (A,≤) be a partially ordered set. An element a ∈ A is maximal

in A if for every c ∈ A which is comparable to a, we have c ≤ a. That is, a ∈ A

is maximal in A if a ≤ c for c ∈ A implies a = c. An element b ∈ A is minimal

in A if for every c ∈ A which is comparable to a we have b ≤ c. That is, b ∈ A is

minimal in A if c ≤ b for c ∈ A implies c = b.

Note. In this section we use the partial ordering of subset inclusion and put this

on submodules of a given module (or ideals of a given ring).
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Definition VIII.1.3. A module A satisfies the maximum condition (respectively,

minimum condition) on submodules if every nonempty set of submodules of A

contains a maximal (respectively, minimal) element with respect to set theoretic

inclusion (i.e., subset inclusion).

Note. We now prove that a module satisfies the ACC/DCC if and only if it satisfies

the maximum/minimum condition on submodules. Notice that the proof uses the

Axiom of Choice.

Theorem VIII.1.4. A module A satisfies the ascending (respectively, descending)

chain condition on submodules if and only if A satisfies the maximal (respectively,

minimal) condition on submodules.

Note. Recall the definition of an exact sequence:

Definition IV.1.16. A pair of module homomorphisms, A
f
→ B

g
→ C,

is exact at B provided Im(f) = Ker(g). A finite sequence of module

homomorphisms, A0

f1

→ A1

f2

→ A2

f3

→ · · ·
fn−1

→ An−1

fn

→ An, is exact

provided Im(fi) = Ker(fi+1) for i = 1, 2, . . . , n − 1.

An exact sequence of the form {0} → A
f
→ B

g
→ {0} is a short exact sequence.

Notice that f is a monomorphism (one to one) and g is an epimorphism (onto).

We will use The Short Five Lemma, Lemma IV.1.17, in the proof of the following.
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Theorem VIII.1.5. Let {0} → A
f
→ B

g
→ C → {0} be a short exact sequence of

modules. Then B satisfies the ascending (respectively, descending) chain condition

on submodules if and only if A and C satisfy it.

Note. If A is a submodule of B and B satisfies the ascending (respectively, de-

scending) chain condition then A satisfies it since each ascending (respectively,

descending) chain of submodules of A is an ascending (respectively, descending)

chain of B. The next result gives conditions under which the ACC or DCC on

submodule A implies that B also has this condition.

Corollary VIII.1.6. If A is a submodule of a module B, then B satisfies the

ascending (respectively, descending) chain condition if and only if A and B/A

satisfy it.

Corollary VIII.1.7. If A1, A2, . . . , An are modules, then the direct sum A1 ⊕

A2 ⊕ · · · ⊕ An satisfies the ascending (respectively, descending chain condition on

submodules if and only if each Ai satisfies it.

Note. The next theorem relates the “Noetherian-ness/Artinian-ness” of a ring with

identity R to the ACC/DCC-ness of associated (finitely generated) R-modules. Its

proof requires results from Section IV.2, “Free Modules and Vector Spaces.” We

start by recalling these results and some module-related definitions.
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Note. Recall that a unitary R-module is an R-module where 1R ∈ R and 1Ra = a

for all “vectors” in group A. Also:

Definition IV.1.4. If X is a subset of a module A over a ring R, then

the intersection of all submodules of A containing X is the submodule

generated by X (or “spanned” by X).

If set X in this definition is finite then the module generated by X is finitely

generated. We have:

Corollary IV.2.2. Every unitary module A over a ring R with iden-

tity is the homomorphic image of a free R-module F . If A is finitely

generated then F may be chosen to be finitely generated.

A free R-module is one satisfying any one of the equivalent conditions of Theorem

IV.2.1 (part (iii)) is that a free module F is R-module isomorphic to a direct

sum of copies of the left R-module R. Though Theorem IV.2.1 doesn’t explicitly

mention finitely generated R-modules, we see in the proof of Theorem IV.2.1 (the

(iv) implies (iii) part) that if X is a basis of R-module F then F is isomorphic to

the direct sum
∑

R where there is one copy of R for each x ∈ x. So if F is finitely

generated then it has a finite basis and is isomorphic to a direct sum of a finite

number of copies of R.

Theorem VIII.1.8. If R is a left Noetherian (respectively, Artinian) ring with

identity, then every finitely generated unitary left R-module A satisfies the ascend-

ing (respectively, descending) chain condition on the submodules. This also holds

if “left” is replaced with “right.”
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Note. So far, we have seen that each result involving the ACC has an analogous

result involving the DCC. the next theorem for a module satisfying the ACC on

on submodules which “has no analogue for the descending chain condition” (see

Hungerford, page 374).

Theorem VIII.1.9. A module A satisfies the ascending chain condition on sub-

modules if and only if every submodule of A is finitely generated. In particular, a

commutative ring R is Noetherian if and only if every ideal of R is finitely generated.

Note. We now carry over the ideas of subnormal series for groups of Section II.8,

“Normal and Subnormal Series,” to modules. The objective here is to prove that

Matn(D), wher D is a division ring, is both Artinian and Noetherian (in Corollary

VIII.1.12). This result will be used in Chapter IX, “The Structure of Rings.”

We give definitions and state results without proof, since the proofs parallel the

corresponding results for groups.

Definition. A normal series for a module A is a chain of submodules of the form

A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An. The factors of the series are the quotient modules

Ai/Ai+1 for i = 0, 1, 2, . . . , n − 1. The length of the series is the number of proper

inclusions, which equals the number of nontrivial factors. A proper refinement is one

which has length longer than the original series. Two normal series are equivalent

if there is a one-to-one correspondence between the nontrivial factors such that the

corresponding factors are are isomorphic modules. A composition series for A is a
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normal series A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An = {0} such that each factor Ak/Ak+1,

for k = 0, 1, 2, . . . , n− 1, is a nonzero module with no proper submodules. If R has

identity then a nonzero unitary module with no proper submodules is simple.

Note. If ring R has identity then a composition series is a normal series A = A0 ⊃

A1 ⊃ A2 ⊃ · · · ⊃ An = {0} with simple factors.

Note. We claim without proof:

Theorem VIII.1.A. If A is a module with a composition series, then

there is no proper refinement of the composition series and therefore is

equivalent to any of its refinements.

This is an analogue of Lemma II.8.8.

Theorem VIII.1.10. Let A be a module.

(a) Any two normal series of A have refinements that are equivalent.

(b) Any two composition series of A are equivalent.

Note. Theorem VIII.1.10(a) is analogous to Schrier’s Theorem (Theorem II.8.10)

and Theorem VIII.1.10(b) is analogous to the Jordan-Hölder Theorem (Theorem

II.8.11).
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Note. We saw in Theorem II.8.4(i) that every finite group has a composition series.

We now give necessary and sufficient conditions for a nonzero module to have a

composition series (notice the use of the Axiom of Choice in the proof). We’ll use

this result to consider Matn(D) where D is a division ring.

Theorem VIII.1.11. A nonzero module A has a composition series if and only if

A satisfies both the ascending and descending chain conditions on submodules.

Note. Now for the result we will use in our study of rings in Chapter IX. The

proof requires some information from Chapter VII, “Linear Algebra,” which we

state within the proof as needed.

Corollary VIII.1.12. If D is a division ring, then the ring Matn(D) of all n × n

matrices over D is both Artinian and Noetherian.
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