Chapter III. Elementary Properties and Examples of Analytic Functions

III.1. Power Series—Proofs of Theorems
Table of contents

1 Proposition III.1.1

2 Theorem III.1.3

3 Proposition III.1.4
Proposition III.1.1

Proposition III.1.1. If $\sum a_n$ converges absolutely, then the series converges.

Proof. Let $\varepsilon > 0$. Let z_n be the partial sum of $\sum_{k=1}^{\infty} a_k$:

$$z_n = a_1 + a_2 + \cdots + a_n.$$

Since $\sum_{n=1}^{\infty} |a_n|$ converges by hypothesis, then there is $N \in \mathbb{N}$ such that

$$\left| \sum_{k=1}^{N-1} |a_k| - \sum_{n=1}^{\infty} |a_n| \right| = \sum_{n=N}^{\infty} |a_n| < \varepsilon.$$

Proposition III.1.1

Proposition III.1.1. If $\sum a_n$ converges absolutely, then the series converges.

Proof. Let $\varepsilon > 0$. Let z_n be the partial sum of $\sum_{k=1}^{\infty} a_k$:

$$z_n = a_1 + a_2 + \cdots + a_n.$$ Since $\sum_{n=1}^{\infty} |a_n|$ converges by hypothesis, then there is $N \in \mathbb{N}$ such that

$$\left| \sum_{k=1}^{N-1} |a_k| - \sum_{n=1}^{\infty} |a_n| \right| = \sum_{n=N}^{\infty} |a_n| < \varepsilon.$$

So if $m > k \geq N$ then by the Triangle Inequality,

$$|z_m - z_k| = \left| \sum_{n=k+1}^{m} a_n \right| \leq \sum_{n=k+1}^{m} |a_n| \leq \sum_{n=N}^{\infty} |a_n| < \varepsilon,$$

and so $\{z_n\}$ is a Cauchy sequence of complex numbers.
Proposition III.1.1

Proposition III.1.1. If $\sum a_n$ converges absolutely, then the series converges.

Proof. Let $\varepsilon > 0$. Let z_n be the partial sum of $\sum_{k=1}^{\infty} a_k$:

$z_n = a_1 + a_2 + \cdots + a_n$. Since $\sum_{n=1}^{\infty} |a_n|$ converges by hypothesis, then there is $N \in \mathbb{N}$ such that

$$\left| \sum_{k=1}^{N-1} |a_k| - \sum_{n=1}^{\infty} |a_n| \right| = \sum_{n=N}^{\infty} |a_n| < \varepsilon.$$

So if $m > k \geq N$ then by the Triangle Inequality,

$$|z_m - z_k| = \left| \sum_{n=k+1}^{m} a_n \right| \leq \sum_{n=k+1}^{m} |a_n| \leq \sum_{n=N}^{\infty} |a_n| < \varepsilon,$$

and so $\{z_n\}$ is a Cauchy sequence of complex numbers. Since \mathbb{C} is complete by Proposition II.3.6, then $z_n \to z$ for some $z \in \mathbb{C}$. That is, there is $z \in \mathbb{C}$ with $\sum_{n=1}^{\infty} a_n = z$.

Proposition III.1.1. If $\sum a_n$ converges absolutely, then the series converges.

Proof. Let $\varepsilon > 0$. Let z_n be the partial sum of $\sum_{k=1}^{\infty} a_k$:

$z_n = a_1 + a_2 + \cdots + a_n$. Since $\sum_{n=1}^{\infty} |a_n|$ converges by hypothesis, then there is $N \in \mathbb{N}$ such that

$$\left| \sum_{k=1}^{N-1} |a_k| - \sum_{n=1}^{\infty} |a_n| \right| = \sum_{n=N}^{\infty} |a_n| < \varepsilon.$$

So if $m > k \geq N$ then by the Triangle Inequality,

$$|z_m - z_k| = \left| \sum_{n=k+1}^{m} a_n \right| \leq \sum_{n=k+1}^{m} |a_n| \leq \sum_{n=N}^{\infty} |a_n| < \varepsilon,$$

and so $\{z_n\}$ is a Cauchy sequence of complex numbers. Since \mathbb{C} is complete by Proposition II.3.6, then $z_n \to z$ for some $z \in \mathbb{C}$. That is, there is $z \in \mathbb{C}$ with $\sum_{n=1}^{\infty} a_n = z$. \qed
Theorem III.1.3

Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as

\[
\frac{1}{R} = \lim_{n \to \infty} |a_n|^{1/n} \quad \text{(so } 0 \leq R \leq \infty\text{).}
\]

Then
(a) if \(|z - a| < R \), the series converges absolutely,
(b) if \(|z - a| > R \), the series diverges, and
(c) if \(0 < r < R \) then the series converges uniformly on \(|z - a| \leq r \). Moreover, \(R \) is the only number having properties (a) and (b). \(R \) is called the radius of convergence of the power series.

Proof. Without loss of generality, \(a = 0 \).
Theorem III.1.3

Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as
\[
\frac{1}{R} = \lim_{n \to \infty} |a_n|^{1/n} \quad (\text{so } 0 \leq R \leq \infty).
\]
Then

(a) if \(|z - a| < R \), the series converges absolutely,
(b) if \(|z - a| > R \), the series diverges, and
(c) if \(0 < r < R \) then the series converges uniformly on \(|z - a| \leq r \). Moreover, \(R \) is the only number having

properties (a) and (b). \(R \) is called the radius of convergence
of the power series.

Proof. Without loss of generality, \(a = 0 \).

(a) If \(|z| < R \), there is \(r \) with \(|z| < r < R \). Then \(1/R < 1/r \) and so there
exists \(N \in \mathbb{N} \) such that for all \(n \geq N \), \(|a_n|^{1/n} < 1/r \) (by definition of

\(\lim |a_n|^{1/n} \)).
Theorem III.1.3

Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as

\[
\frac{1}{R} = \lim \sup |a_n|^{1/n} \quad \text{(so } 0 \leq R \leq \infty) \text{). Then}
\]

(a) if \(|z - a| < R \), the series converges absolutely,
(b) if \(|z - a| > R \), the series diverges, and
(c) if \(0 < r < R \) then the series converges uniformly on \(|z - a| \leq r \). Moreover, \(R \) is the only number having properties (a) and (b). \(R \) is called the radius of convergence of the power series.

Proof. Without loss of generality, \(a = 0 \).

(a) If \(|z| < R \), there is \(r \) with \(|z| < r < R \). Then \(1/R < 1/r \) and so there exists \(N \in \mathbb{N} \) such that for all \(n \geq N \), \(|a_n|^{1/n} < 1/r \) (by definition of \(\lim \sup |a_n|^{1/n} \)). So for \(n \geq N \), \(|a_n| < 1/r^n \) and \(|a_nz^n| < (|z|/r)^n \). Next,

\[
\sum_{n=0}^{\infty} |a_nz^n| = \sum_{n=0}^{N-1} |a_nz^n| + \sum_{n=N}^{\infty} |a_nz^n| < \sum_{n=0}^{N-1} |a_nz^n| + \sum_{n=N}^{\infty} \left(\frac{|z|}{r} \right)^n.
\]
Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as
\[
\frac{1}{R} = \lim_{n \to \infty} |a_n|^{1/n} \quad (\text{so } 0 \leq R \leq \infty).
\]
Then
(a) if \(|z - a| < R \), the series converges absolutely,
(b) if \(|z - a| > R \), the series diverges, and
(c) if \(0 < r < R \) then the series converges uniformly on \(|z - a| \leq r \). Moreover, \(R \) is the only number having properties (a) and (b). \(R \) is called the radius of convergence of the power series.

Proof. Without loss of generality, \(a = 0 \).

(a) If \(|z| < R \), there is \(r \) with \(|z| < r < R \). Then \(1/R < 1/r \) and so there exists \(N \in \mathbb{N} \) such that for all \(n \geq N \), \(|a_n|^{1/n} < 1/r \) (by definition of \(\lim |a_n|^{1/n} \)). So for \(n \geq N \), \(|a_n| < 1/r^n \) and \(|a_nz^n| < (|z|/r)^n \). Next,
\[
\sum_{n=0}^{\infty} |a_nz^n| = \sum_{n=0}^{N-1} |a_nz^n| + \sum_{n=N}^{\infty} |a_nz^n| < \sum_{n=0}^{N-1} |a_nz^n| + \sum_{n=N}^{\infty} \left(\frac{|z|}{r}\right)^n.
\]
Theorem III.1.3 (continued 1)

Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as

\[
\frac{1}{R} = \lim_{n \to \infty} |a_n|^{1/n} \quad (\text{so } 0 \leq R \leq \infty).
\]

Then

(a) if \(|z - a| < R \), the series converges absolutely,

(b) if \(|z - a| > R \), the series diverges, and

(c) if \(0 < r < R \) then the series converges uniformly on \(|z - a| \leq r \). Moreover, \(R \) is the only number having properties (a) and (b). \(R \) is called the *radius of convergence* of the power series.

Proof (continued). Next,

\[
\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{N-1} |a_n z^n| + \sum_{n=N}^{\infty} |a_n z^n| < \sum_{n=0}^{N-1} |a_n z^n| + \sum_{n=N}^{\infty} \left(\frac{|z|}{r} \right)^n.
\]

Since \(|z|/r < 1 \), then \(\sum_{n=N}^{\infty} a_n z^n \) converges absolutely, and the power series converges absolutely for \(|z| < R \).
Theorem III.1.3 (continued 2)

Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as
\[
\frac{1}{R} = \lim_{n \to \infty} |a_n|^{1/n} \quad \text{(so } 0 \leq R \leq \infty) \text{). Then}

(c) if \(0 < r < R \) then the series converges uniformly on \(|z - a| \leq r \).

Proof (continued). (c) Suppose \(r < R \) and choose \(\rho \) such that \(r < \rho < R \). As in the proof of (a), let \(N \in \mathbb{N} \) be such that \(|a_n| < 1/\rho^n \) for all \(n \geq N \). Then if \(|z| \leq r \), we have \(|a_n z^n| < (r/\rho)^n \) for all \(n \geq N \), and \((r/\rho) < 1 \).
Theorem III.1.3 (continued 2)

Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as

\[
\frac{1}{R} = \lim \left| a_n \right|^{1/n} \quad (\text{so } 0 \leq R \leq \infty).
\]

Then

(c) if \(0 < r < R \) then the series converges uniformly on \(|z - a| \leq r \).

Proof (continued). (c) Suppose \(r < R \) and choose \(\rho \) such that \(r < \rho < R \). As in the proof of (a), let \(N \in \mathbb{N} \) be such that \(|a_n| < 1/\rho^n \) for all \(n \geq N \). Then if \(|z| \leq r \), we have \(|a_nz^n| < (r/\rho)^n \) for all \(n \geq N \), and \((r/\rho) < 1 \). Now, the Weierstrass M-Test says (Theorem II.6.2): Let \(u_n : X \rightarrow \mathbb{C} \) be a function from a metric space \(X \) to \(\mathbb{C} \) such that \(|u_n(x)| \leq M_n \) for all \(x \in X \) and suppose \(\sum_{n=1}^{\infty} M_n < \infty \). Then \(\sum_{n=1}^{\infty} u_n \) is uniformly convergent.
Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as
\[
\frac{1}{R} = \lim_{n \to \infty} |a_n|^{1/n} \quad (\text{so } 0 \leq R \leq \infty). \]

Then
\[
\text{(c) if } 0 < r < R \text{ then the series converges uniformly on } |z - a| \leq r.
\]

Proof (continued). (c) Suppose \(r < R \) and choose \(\rho \) such that \(r < \rho < R \). As in the proof of (a), let \(N \in \mathbb{N} \) be such that \(|a_n| < 1/\rho^n \) for all \(n \geq N \). Then if \(|z| \leq r \), we have \(|a_nz^n| < (r/\rho)^n \) for all \(n \geq N \), and \((r/\rho) < 1 \). Now, the Weierstrass \(M \)-Test says (Theorem II.6.2): Let \(u_n : X \to \mathbb{C} \) be a function from a metric space \(X \) to \(\mathbb{C} \) such that \(|u_n(x)| \leq M_n \) for all \(x \in X \) and suppose \(\sum_{n=1}^{\infty} M_n < \infty \). Then \(\sum_{n=1}^{\infty} u_n \) is uniformly convergent. So with \(M_n = (r/\rho)^n \), we see that the series \(\sum_{n=N}^{\infty} u_n = \sum_{n=N}^{\infty} a_nz^n \) converges uniformly on \(\{z \mid |z| \leq r\} \) (and so does \(\sum_{n=0}^{\infty} a_nz^n \)), by the Weierstrass \(M \)-Test.
Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z-a)^n \), define the number \(R \) as

\[
\frac{1}{R} = \lim_{n \to \infty} |a_n|^{1/n} \quad (\text{so } 0 \leq R \leq \infty). \]

Then

(c) if \(0 < r < R \) then the series converges uniformly on \(|z-a| \leq r \).

Proof (continued). (c) Suppose \(r < R \) and choose \(\rho \) such that \(r < \rho < R \). As in the proof of (a), let \(N \in \mathbb{N} \) be such that \(|a_n| < 1/\rho^n \) for all \(n \geq N \). Then if \(|z| \leq r \), we have \(|a_n z^n| < (r/\rho)^n \) for all \(n \geq N \), and \((r/\rho) < 1 \). Now, the Weierstrass \(M \)-Test says (Theorem II.6.2): Let \(u_n : X \to \mathbb{C} \) be a function from a metric space \(X \) to \(\mathbb{C} \) such that \(|u_n(x)| \leq M_n \) for all \(x \in X \) and suppose \(\sum_{n=1}^{\infty} M_n < \infty \). Then \(\sum_{n=1}^{\infty} u_n \) is uniformly convergent. So with \(M_n = (r/\rho)^n \), we see that the series \(\sum_{n=N}^{\infty} u_n = \sum_{n=N}^{\infty} a_n z^n \) converges uniformly on \(\{z \mid |z| \leq r\} \) (and so does \(\sum_{n=0}^{\infty} a_n z^n \)), by the Weierstrass \(M \)-Test.
Theorem III.1.3 (continued 3)

Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as

\[
\frac{1}{R} = \lim_{n \to \infty} |a_n|^{1/n} \quad (\text{so } 0 \leq R \leq \infty).
\]

Then

(b) if \(|z - a| > R \), the series diverges, and

Proof (continued). (b) Let \(|z| > R \) and choose \(r \) with \(|z| > r > R \). Then \(1/r < 1/R \). So, by the definition of \(\lim \), there are infinitely many \(n \in \mathbb{N} \) such that \(1/r < |a_n|^{1/n} \). For these \(n \), \(|a_n z^n| > (|z|/r)^n \) and since \(|z|/r > 1 \), these terms are unbounded and hence the series diverges for such \(z \).
Theorem III.1.3. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \), define the number \(R \) as
\[
\frac{1}{R} = \lim |a_n|^{1/n} \text{ (so } 0 \leq R \leq \infty) \).
Then
\[(b) \text{ if } |z - a| > R, \text{ the series diverges, and } \]

Proof (continued). (b) Let \(|z| > R \) and choose \(r \) with \(|z| > r > R \). Then \(1/r < 1/R \). So, by the definition of \(\lim \), there are infinitely many \(n \in \mathbb{N} \) such that \(1/r < |a_n|^{1/n} \). For these \(n \), \(|a_n z^n| > (|z|/r)^n \) and since \(|z|/r > 1 \), these terms are unbounded and hence the series diverges for such \(z \).
Proposition III.1.4. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \) is a given power series with radius of convergence \(R \), then \(R = \lim |a_n/a_{n+1}| \), if the limit exists.

Proof. Without loss of generality, \(a = 0 \). Let \(\alpha = \lim |a_n/a_{n+1}| \) and suppose \(|z| < r < \alpha \). Then (by the definition of limit of a sequence) there exists \(N \in \mathbb{N} \) such that for all \(n \geq N \), we have \(|a_n/a_{n+1}| > r \).
Proposition III.1.4. If $\sum_{n=0}^{\infty} a_n(z-a)^n$ is a given power series with radius of convergence R, then $R = \lim |a_n/a_{n+1}|$, if the limit exists.

Proof. Without loss of generality, $a = 0$. Let $\alpha = \lim |a_n/a_{n+1}|$ and suppose $|z| < r < \alpha$. Then (by the definition of limit of a sequence) there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $|a_n/a_{n+1}| > r$. Let $B = |a_N|r^N$ and then $|a_{N+1}|r^{N+1} = |a_{N+1}|rr^N < |a_N|r^N = B$ (since $|a_N| > |a_{N+1}|r$), $|a_{N+2}|rr^{N+1} < |a_{N+1}|r^{N+1} < B$, \ldots, and $|a_nr^n| \leq B$ for all $n \geq N$. This implies $|a_nz^n| = |a_nr^n||z^n/r^n \leq B|z^n/r^n$ for all $n \geq N$.
Proposition III.1.4

If \(\sum_{n=0}^{\infty} a_n(z - a)^n \) is a given power series with radius of convergence \(R \), then \(R = \lim |a_n/a_{n+1}| \), if the limit exists.

Proof. Without loss of generality, \(a = 0 \). Let \(\alpha = \lim |a_n/a_{n+1}| \) and suppose \(|z| < r < \alpha \). Then (by the definition of limit of a sequence) there exists \(N \in \mathbb{N} \) such that for all \(n \geq N \), we have \(|a_n/a_{n+1}| > r \). Let \(B = |a_N|r^N \) and then \(|a_{N+1}|r^{N+1} = |a_{N+1}|rr^N < |a_N|r^N = B \) (since \(|a_N| > |a_{N+1}|r \)). Let \(a_{N+1} |r^{N+1} < |a_{N+1}|r^{N+1} < B \), \(\ldots \), and \(|a_nr^n| \leq B \) for all \(n \geq N \). This implies \(|a_nz^n| = |a_nr^n| |z^n/r^n| \leq B |z^n/r^n| \) for all \(n \geq N \).

Since \(\sum_{n=1}^{\infty} B|z|^n/r^n \) is a convergent geometric series for \(|z| < r \), then by the Direct Comparison Test, the series \(\sum_{n=1}^{\infty} |a_nz^n| \) converges and the original series converges absolutely. Since \(r < \alpha \) is arbitrary, then \(\alpha \leq R \).
Proposition III.1.4 If \(\sum_{n=0}^{\infty} a_n(z-a)^n \) is a given power series with radius of convergence \(R \), then \(R = \lim |a_n/a_{n+1}| \), if the limit exists.

Proof. Without loss of generality, \(a = 0 \). Let \(\alpha = \lim |a_n/a_{n+1}| \) and suppose \(|z| < r < \alpha \). Then (by the definition of limit of a sequence) there exists \(N \in \mathbb{N} \) such that for all \(n \geq N \), we have \(|a_n/a_{n+1}| > r \). Let \(B = |a_N| r^N \) and then \(|a_{N+1}| r^{N+1} = |a_{N+1}| r^N < |a_N| r^N = B \) (since \(|a_N| > |a_{N+1}| r \), \(|a_{N+2}| r^{N+2} < |a_{N+1}| r^{N+1} < B \), \ldots, and \(|a_n r^n| \leq B \) for all \(n \geq N \). This implies \(|a_n z^n| = |a_n r^n| |z|^n / r^n \leq B |z|^n / r^n \) for all \(n \geq N \). Since \(\sum_{n=1}^{\infty} B |z|^n / r^n \) is a convergent geometric series for \(|z| < r \), then by the Direct Comparison Test, the series \(\sum_{n=1}^{\infty} |a_n z^n| \) converges and the original series converges absolutely. Since \(r < \alpha \) is arbitrary, then \(\alpha \leq R \).
Proposition III.1.4. If $\sum_{n=0}^{\infty} a_n(z - a)^n$ is a given power series with radius of convergence R, then $R = \lim |a_n/a_{n+1}|$, if the limit exists.

Proof (continued). Next, suppose $|z| > r > \alpha$. Then, as above, for some $N \in \mathbb{N}$, for all $n \geq N$ we have $|a_n| < r|a_{n+1}|$. Again, with $B = |a_N r^N|$, for $n \geq N$ we get $|a_n r^n| \geq B = |a_N r^N|$ and $|a_n z^n| \geq B|z|^n/r^n$ which diverges to ∞ as $n \to \infty$ since $|z| > r$. So $a_n z^n \not\to 0$ and by the Test for Divergence (for complex series), $\sum_{n=0}^{\infty} a_n z^n$ diverges. Since $r > \alpha$ is arbitrary, then $R \leq \alpha$.
Proposition III.1.4. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \) is a given power series with radius of convergence \(R \), then \(R = \lim |a_n/a_{n+1}| \), if the limit exists.

Proof (continued). Next, suppose \(|z| > r > \alpha \). Then, as above, for some \(N \in \mathbb{N} \), for all \(n \geq N \) we have \(|a_n| < r|a_{n+1}| \). Again, with \(B = |a_N r^N| \), for \(n \geq N \) we get \(|a_n r^n| \geq B = |a_N r^N| \) and \(|a_n z^n| \geq B|z|^n/r^n \) which diverges to \(\infty \) as \(n \to \infty \) since \(|z| > r \). So \(a_n z^n \nrightarrow 0 \) and by the Test for Divergence (for complex series), \(\sum_{n=0}^{\infty} a_n z^n \) diverges. Since \(r > \alpha \) is arbitrary, then \(R \leq \alpha \). Therefore \(R = \alpha \). \(\square \)
Proposition III.1.4. If \(\sum_{n=0}^{\infty} a_n(z - a)^n \) is a given power series with radius of convergence \(R \), then \(R = \lim |a_n/a_{n+1}| \), if the limit exists.

Proof (continued). Next, suppose \(|z| > r > \alpha\). Then, as above, for some \(N \in \mathbb{N} \), for all \(n \geq N \) we have \(|a_n| < r|a_{n+1}|\). Again, with \(B = |a_N r^N| \), for \(n \geq N \) we get \(|a_n r^n| \geq B = |a_N r^N| \) and \(|a_n z^n| \geq B|z|^n/r^n \) which diverges to \(\infty \) as \(n \to \infty \) since \(|z| > r\). So \(a_n z^n \nrightarrow 0 \) and by the Test for Divergence (for complex series), \(\sum_{n=0}^{\infty} a_n z^n \) diverges. Since \(r > \alpha \) is arbitrary, then \(R \leq \alpha \). Therefore \(R = \alpha \). \(\square \)