Proposition 3.8

Let \(z_1, z_2, \ldots, z_n \) be distinct points in the complex plane. Then the function \(f(z) = \prod_{k=1}^{n} \frac{z - z_k}{z - z_k^*} \) is analytic at each point \(z \) where \(f \) is defined, and \(f \) preserves angles at each such point.

Proof. Let \(z_1, \ldots, z_n \) be distinct points in the complex plane. Then for each \(k \), the function \(f_k(z) = \frac{z - z_k}{z - z_k^*} \) is analytic at each point \(z \) where \(f_k \) is defined. Moreover, \(f_k \) preserves angles at each such point. Thus, \(f(z) = \prod_{k=1}^{n} f_k(z) \) is analytic at each point \(z \) where \(f \) is defined, and \(f \) preserves angles at each such point.

Theorem 3.4

If \(f \) is analytic at \(z \), then \(f \) is analytic at \(z \).

Proof. Suppose \(f \) is analytic at \(z \). Then \(f \) is smooth in a region \(G \) and \(f \) is in \(G \) admits a smooth path which intersects each point \(z \) of \(G \) where \(f \) is analytic, then \(f \) preserves angles at each such point.
\[
\left\{ \begin{array}{l}
2epq + 2eq - 2pq - e2p + e2q - 2pe - 2eq
\end{array} \right.
\]

\[
\frac{|e - q|}{|e - p|} = \frac{\frac{1}{2} (q + p) + q - p + q + p}{(q - p) + (p - q)} = |q + p|
\]

\[
\Rightarrow |q + p| |q - p| = |q + p|
\]

Hence

\[
|q + p| |q - p| = (q + p)(q - p) = q^2 - p^2
\]

\[
\text{Now } \lim_{q \to \infty} g = 0 \text{ for fixed } q, \text{ implying that all such } m \text{ lie on a line.}
\]

\[
\text{Suppose } \alpha \text{ is real, then equation } (3.11) \text{ becomes}
\]

\[
\text{Case II: Suppose } \alpha \text{ is not real. Then equation } (3.11) \text{ becomes}
\]

\[
\text{Proposition III.3.10. Let } z, z', z'' \in \mathbb{C} \text{ be distinct. Then the cross ratio } (z, z', z'')
\]

\[
= (z, z', z'') \text{ is real if and only if the four points lie on a circle/line.}
\]

\[
\boxed{\text{Proof (continued)}}
\]

\[
\text{(3.11)} \quad \alpha = \begin{cases} 0 & \text{if } \frac{p+q}{2} \not\in \mathbb{R} \\
\frac{p+q}{2} & \text{otherwise}
\end{cases}
\]

\[
\text{(m)} S = (m) S = x \text{ and so } \exists x \in \mathbb{R} \text{ such that } (z, x) \in \mathbb{R}. \text{ We know that the inverse image of } \mathbb{R} \text{ is a circle/line under any}
\]

\[
\{ (z)' T-z' z' z' \} = \{ x \in \mathbb{R} | (z) x = \} \text{ if real} \]

\[
\text{Proof. Let } \alpha : \mathbb{C} \to \mathbb{C} \text{ be defined as usual. Then the cross ratio } (z, z', z'') \text{ is real if and only if the four points lie on a circle/line.}
\]

\[
\text{Proposition III.3.10. Let } z, z', z'' \in \mathbb{C} \text{ be distinct. Then the cross ratio } (z, z', z'')
\]

\[
= (z, z', z'') \text{ is real if and only if the four points lie on a circle/line.}
\]

\[
\text{Proposition III.3.9. } \exists z, z', z'' \in \mathbb{C} \text{ are distinct and } w, \omega \in \mathbb{C} \text{ are distinct. Then there is one and only one Mobius transformation such that}
\]

\[
\text{Proposition III.3.10. Let } z, z', z'' \in \mathbb{C} \text{ be distinct. Then the cross ratio } (z, z', z'')
\]

\[
= (z, z', z'') \text{ is real if and only if the four points lie on a circle/line.}
\]
\[z_1 \text{ and } z_2 \text{ are symmetric with respect to } \overline{z} = T(z). \]

\[T(z_1, z_2, z_3, z_4) = \]

Proposition III.3.8.

Since \(z \) and \(z' \) are symmetric with \(L \),

\[T(z_1, z_2, z_3, z_4) = \]

Proposition III.3.8.

Thus, \(z_1, z_2, z_3, z_4 \) are mapped onto \(L \),

\[\text{LH:}\]

Theorem III.3.19. Symmetry Principle

That \(S \) maps \(\mathbb{C} \) one-to-one and onto \(\mathbb{C} \).

Recall \(L = \frac{\alpha - \beta}{\gamma - \beta} \).

So \(S(L) = \frac{L \cdot \gamma}{\gamma - \beta} \).

That \(S \) is real and \(\alpha, \beta, \gamma \) are real by \(S \) is real.

Proposition III.3.19.

For each \(z \in \mathbb{C} \), \(S(z) = \frac{z\gamma}{\gamma - \beta} \), \(z, \bar{z}, z^2, z^3, z^4 \) are real by \(S \) is real.

Proof.

Let \(L \) be a circle/line in \(\mathbb{C} \) and let \(S \) be a Mobius transformation takes circles/lines onto circles/lines.

Theorem III.3.14.

A Mobius transformation takes circles/lines onto circles/lines.

Then the cross ratio \(\{z_1, z_2, z_3, z_4\} \) is real if and only if the four points lie on a circle/line.

Proposition III.3.10.

Let \(z_1, z_2, z_3, z_4 \in \mathbb{C} \) be distinct. Then the cross ratio \(\{z_1, z_2, z_3, z_4\} \) is real if and only if the four points lie on a circle/line.