Proposition IV.2.1

Proposition IV.2.1. Let \(\varphi : [a, b] \times [c, d] \rightarrow \mathbb{C} \) be a continuous function and define \(g : [c, d] \rightarrow \mathbb{C} \) by \(g(t) = \int_a^b \varphi(s, t) \, ds \). Then \(g \) is continuous.

Moreover, if \(\frac{\partial \varphi}{\partial t} \) exists and is a continuous function on \([a, b] \times [c, d]\) then \(g \) is continuously differentiable and
\[
g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s, t) \, ds.
\]

Proof. The proof that \(g \) is continuous is left as Exercise IV.2.1.

Now suppose \(\frac{\partial \varphi}{\partial t} \) exists and is continuous on \([a, b] \times [c, d]\). Since \([a, b] \times [c, d]\) is a compact subset of \(\mathbb{R}^2 \) then by Theorem II.5.15, \(\frac{\partial \varphi}{\partial t} \) is uniformly continuous on \([a, b] \times [c, d]\). Now denote \(\frac{\partial \varphi}{\partial t} = \varphi_2 \). Fix a point \(t_0 \in [c, d] \) and let \(\varepsilon > 0 \). So there is \(\delta > 0 \) such that
\[
|\varphi_2(s', t') - \varphi_2(s, t)| < \varepsilon \text{ whenever } (s - s')^2 + (t - t')^2 < \delta^2.
\]
Proposition IV.2.1 (continued 3)

Proposition IV.2.1. Let \(\varphi : [a, b] \times [c, d] \to \mathbb{C} \) be a continuous function and define \(g : [c, d] \to \mathbb{C} \) by \(g(t) = \int_a^b \varphi(s, t) \, ds \). Then \(g \) is continuous. Moreover, if \(\frac{\partial \varphi}{\partial t} \) exists and is a continuous function on \([a, b] \times [c, d]\) then \(g \) is continuously differentiable and

\[
g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s, t) \, ds.
\]

Proof (continued). Since \(t_0 \) is an arbitrary element of \([c, d]\) then we have \(g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s, t) \, ds \) on \([a, b] \times [c, d]\), as claimed. Since \(\frac{\partial \varphi}{\partial t} \) is hypothesized to be continuous then \(g' \) is continuous by Exercise IV.2.1 (with \(g \) and \(\varphi \) of the exercise replaced with \(g' \) and \(\partial \varphi/\partial t \) here), as claimed.

Lemma IV.2.A

Lemma IV.2.A. If \(|z| < 1 \) then

\[
\int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, ds = 2\pi.
\]

Proof. Let \(\varphi(s, t) = \frac{e^{is}}{e^{is} - tz} \) for \(0 \leq t \leq 1 \) and \(0 \leq s \leq 2\pi \). Since \(|z| < 1 \), \(\varphi \) is continuously differentiable. So by Proposition IV.2.1, \(g(t) = \int_0^{2\pi} \varphi(s, t) \, ds \) is continuously differentiable. Also,

\[
g(0) = \int_0^{2\pi} \varphi(s, 0) \, ds = -\int_0^{2\pi} \frac{e^{is}}{e^{is} - 0} \, dz = \int_0^{2\pi} 1 \, dz = 2\pi.
\]

Next, \(g'(t) = \int_0^{2\pi} \frac{ze^{is}}{(e^{is} - tz)^2} \, ds \) by Proposition IV.2.1. Notice for \(\Phi(s) = \frac{zi}{e^{is} - tz} \) (with \(t \) fixed) we have \(\Phi'(s) = \frac{ze^{is}}{(e^{is} - tz)^2} \) and so \(\Phi(s) \) is a primitive for \(\frac{ze^{is}}{(e^{is} - tz)^2} \), and so

Lemma IV.2.A (continued)

Lemma IV.2.A. If \(|z| < 1 \) then

\[
\int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, ds = 2\pi.
\]

Proof (continued).

\[
g'(t) = \int_0^{2\pi} \frac{ze^{is}}{(e^{is} - tz)^2} \, ds = \Phi(2\pi) - \Phi(0) = \frac{zi}{e^{2\pi i} - tz} - \frac{z}{e^0 - tz} = 0.
\]

Therefore \(g \) is constant and \(g(1) = g(0) = 2\pi \). That is,

\[
g(1) = \int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, dz = 2\pi.
\]

Theorem IV.2.6

Proposition IV.2.6. Let \(f : G \to \mathbb{C} \) be analytic and suppose \(\overline{B(a; r)} \subseteq G \) (\(r > 0 \)). If \(\gamma(t) = a + re^{it} \), and \(0 \leq t \leq 2\pi \). Then

\[
f(z) = \left. \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, dw \right|_{z = a}
\]

for \(|z - a| < r \).

Proof. Without loss of generality, we assume \(a = 0 \) and \(r = 1 \) (otherwise, we consider \(g(z) = f(a + rz) \) and \(G_1 = \{ \frac{1}{r}(z - a) \mid z \in G \} \)). That is, \(\overline{B(0, 1)} \subseteq G \). Fix \(z \) where \(|z| < 1 \). We then need to show that

\[
f(z) = \left. \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, dw \right|_{z = a} = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(e^{is})e^{is}}{e^{is} - z} \, ds.
\]

This is equivalent to

\[
0 = \int_0^{2\pi} \frac{f(e^{is})e^{is}}{e^{is} - z} \, ds - 2\pi f(z) = \int_0^{2\pi} \left(\frac{f(e^{is})e^{is}}{e^{is} - z} - f(z) \right) \, ds.
\]
Theorem IV.2.6 (continued)

Proof (continued). Let \(\varphi(s, t) = \frac{f(z + t(e^{is} - z))e^{is}}{e^{is} - z} - f(z) \) for \(0 \leq t \leq 1 \) and \(0 \leq s \leq 2\pi \). Since

\[|z + t(e^{is} - z)| = |z(1 - t) + te^{is}| \leq |z(1 - t)| + t \leq |1 - t| + t = 1 - t + t = 1, \]

then \(\varphi \) is well defined (\(f \) takes on values in \(B(0; 1) \subset G \)) and is continuously differentiable. Let \(g(t) = \int_0^{2\pi} \varphi(s, t) \, ds \). Then by Proposition IV.2.1, \(g \) is continuously differentiable. Notice that

\[
g(0) = \int_0^{2\pi} \varphi(s, 0) \, ds = \int_0^{2\pi} \left(\frac{f(z)e^{is}}{e^{is} - z} - f(z) \right) \, ds
= f(z) \int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, ds - 2\pi f(z)
= 0 \text{ by Lemma IV.2.6}
\]

We now show \(g \) is constant. By Proposition IV.2.1,

\[g'(t) = \int_0^{2\pi} \varphi_2(s, t) \, ds \text{ where } \varphi_2(s, t) = e^{is}f'(z + t(e^{is} - z)) = \partial \varphi/\partial t. \]

This is (*) and the result follows.

Lemma IV.2.7

Lemma IV.2.7. Let \(\gamma \) be a rectifiable curve in \(\mathbb{C} \) and suppose that \(F_n \) and \(F \) are continuous on \(\{ \gamma \} \). If \(F \) is the uniform limit of \(F_n \) on \(\{ \gamma \} \) then

\[
\int_{\gamma} F = \lim \left(\int_{\gamma} F_n \right).
\]

Proof. Let \(\varepsilon > 0 \); then there is \(N \in \mathbb{N} \) such that

\[
|F_n(w) - F(w)| < \varepsilon/V(\gamma) \text{ for all } w \in \{ \gamma \} \text{ and } n \geq N.
\]

Then

\[
\left| \int_{\gamma} F - \int_{\gamma} F_n \right|
= \left| \int_{\gamma} (F - F_n) \right|
\leq \int_{\gamma} |F(w) - F_n(w)| \, |dw| \text{ by Proposition IV.1.17}
< \frac{\varepsilon}{V(\gamma)} V(\gamma) = \varepsilon
\]

for all \(n \geq N \). So \(\int_{\gamma} F = \lim(\int_{\gamma} F_n) \).

Theorem IV.2.8

Theorem IV.2.8. Let \(f \) be analytic in \(B(a; R) \). Then

\[f(z) = \sum_{n=0}^{\infty} a_n(z - a)^n \text{ for } |z - a| < R \text{ where } a_n = f^{(n)}(a)/n! \text{ and this series has radius of convergence } \geq R. \]

Proof. Let \(0 < r < R \) and then \(\overline{B}(a; r) \subset B(a; R) \). If \(\gamma(t) = a + re^{it}, \)
\(t \in [0, 2\pi], \) then by Proposition IV.2.6, \(f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, dw \) for

\[|z - a| < r. \]

For \(|z - a| < r \) and \(w \in \{ \gamma \}, \)

\[|f(w)| \left| \frac{z - a}{w - a} \right|^n \leq M \left(\frac{|z - a|}{r} \right)^n \]

where \(M = \max \{|f(w)| \mid |w - a| = r \}. \)

Since \(|z - a|/r < 1 \), the Weierstrass M-Test (with \(M_n = (|z - a|/r)^n \)) implies that \(\sum_{n=1}^{\infty} f(w)(z - a)^n/(w - a)^{n+1} \) converges uniformly for \(w \in \{ \gamma \}. \)
Theorem 4.2.8

Proof (continued). From the computation before Lemma 4.2.7 we have

\[f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw \text{ by Proposition 4.2.6} \]

\[= \frac{1}{2\pi i} \int_{\gamma} \left(\frac{f(w)}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a} \right)^n \right) \, dw \]
\[= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} \, dw \right) (z-a)^n \text{ by Lemma 4.2.7.} \]

Next set \(a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} \, dw \) and we have

\[f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \] where the series converges if \(|z-a| < r \). By Proposition 3.2.5, \(a_n = \frac{f^{(n)}(a)}{n!} \). So each \(a_n \) is (1) independent of \(z \),

(2) independent of \(\{\gamma\} \), and (3) independent of \(r \). Since \(r \) was chosen arbitrarily and \(< R \), then the series representation holds for all \(z \) such that \(|z-a| < R \) and the radius of convergence of the series is at least \(R \). \(\square \)

Theorem 4.2.14

Theorem 4.2.14. Cauchy’s Estimate. Let \(f \) be analytic in \(B(a; R) \) and suppose \(|f(z)| \leq M \) for all \(z \in B(a; R) \). Then

\[|f^{(n)}(a)| \leq \frac{n! M}{R^n}. \]

Proof. By Corollary 4.2.13, for \(r < R \) we have

\[|f^{(n)}(a)| = \left| \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} \, dw \right| \text{ where } \gamma(t) = a + re^{it}, t \in [0, 2\pi] \]
\[\leq \frac{n!}{2\pi} \int_{\gamma} \left| \frac{f(w)}{(w-a)^{n+1}} \right| \, dw \text{ by Proposition 4.1.17(b)} \]
\[\leq \frac{n! M}{2\pi r^{n+1}} (2\pi r) \text{ by Proposition 4.1.17(b)} \]
\[= \frac{n! M}{r^n}. \]

Now let \(r \to R^- \) and the result follows. \(\square \)

Theorem 4.2.15

Proposition 4.2.15. Let \(f \) be analytic in \(B(a; R) \) and suppose \(\gamma \) is a closed rectifiable curve in \(B(a; R) \). Then \(f \) has a primitive in \(B(a; R) \) and so \(\int_{\gamma} f = 0 \).

Proof. We know by Theorem 4.2.8, that an analytic function has a power series representation: \(f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \) for \(z \in B(a; R) \). Define

\[F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1} = (z-a) \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^n. \]

Then, by definition, the radius of convergence of \(F \) is

\[\lim_{n \to \infty} \frac{1}{\left(\frac{a_n}{n+1} \right)^{1/n}} = \lim_{n \to \infty} \frac{1}{\left(\frac{a_n}{n+1} \right)^{1/n}} = \lim_{n \to \infty} \frac{1}{a_n^{1/n}} \]

and so the radius of convergence of \(F \) is the same as the radius of convergence of \(f \). So \(F \) is defined on \(B(a; R) \). Also, by Proposition 3.2.5, \(F'(z) = f(z) \). So \(F \) is a primitive of \(f \) and by Corollary 4.1.22,

\[\int_{\gamma} f = 0. \]