Theorem V.2.2

Residue Theorem.
Let f be analytic in the region G, except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then
\[
\frac{1}{2\pi i} \int_\gamma f = \sum_{k=1}^m n(\gamma; a_k) \text{Res}(f; a_k).
\]

Proof. Define $m_k = n(\gamma; a_k)$ for $1 \leq k \leq m$. Choose positive r_1, r_2, \ldots, r_m such that the discs $B(a_i; r_i)$ are disjoint, none of them intersect $\{\gamma\}$, and each disc is contained in G. This can be done since $\{\gamma\}$ is compact (by Theorem II.5.17) and G is open. Let $\gamma_k(t) = a_k + r_k \exp(-2\pi im_k t)$ for $0 \leq t \leq 1$.

Theorem V.2.2 (continued 2)

Proof (continued). So the uniform convergence gives
\[
\int_{\gamma_k} f(z) \, dz = \int_{\gamma_k} \left(\sum_{n=-\infty}^{\infty} b_n (z - a_k)^n \right) = \sum_{n=-\infty}^{\infty} b_n \left(\int_{\gamma_k} (z - a_k)^n \, dz \right).
\]
Now for $n \neq -1$, $(z - a_k)^n$ has a primitive and $\int_{\gamma_k} (z - a_k)^n \, dz = 0$. When $n = -1$,
\[
b_{-1} \int_{\gamma_k} (z - a_k)^{-1} \, dz = \text{Res}(f; a_k) \int_{\gamma_k} (z - a_k)^{-1} \, dz
\]
by the definition of residue
\[
= \text{Res}(f; a_k) 2\pi i \text{Res}(f; a_k)
\]
by the definition of winding number.
Theorem V.2.2. Residue Theorem.
Let \(f \) be analytic in the region \(G \), except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then
\[
\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k).
\]

Proof (continued). So (2.3) gives that
\[
\int_{\gamma} f(z) \, dz = -\sum_{k=1}^{m} \left(\int_{\gamma_k} f(z) \, dz \right)
\]
\[
= -\sum_{k=1}^{m} 2\pi i n(\gamma_k; a_k) \text{Res}(f; a_k) = 2\pi i \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
\]

since \(n(\gamma_k; a_k) = -n(\gamma; a_k) \). Therefore,
\[
\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k). \quad \square
\]

Proposition V.2.4. Suppose \(f \) has a pole of order \(m \) at \(z = a \). Let \(g(z) = (z - a)^m f(z) \). Then
\[
\text{Res}(f; a) = \frac{1}{(m-1)!} g^{(m-1)}(a).
\]

Proof. By Proposition V.1.4 and the definition of “pole of order \(m \),” we have that \(g(z) \) has a removable singularity at \(z = a \) and \(g(a) = b_0 \neq 0 \) (here, we technically mean that \(\lim_{z \to a} g(z) = b_0 \neq 0 \)). Let \(g(z) = \sum_{k=1}^{\infty} b_k (z-a)^k \) be the power series of \(g \) about \(z = a \). Then for \(z \) “near” \(a \) but not equal to \(a \), we have
\[
f(z) = \frac{b_0}{(z-a)^m} + \frac{b_1}{(z-a)^{m-1}} + \cdots + \frac{b_{m-1}}{z-a} + \sum_{k=0}^{\infty} b_{m+k}(z-a)^k.
\]

So this is the Laurent series of \(f \) about \(z = a \), and so \(\text{Res}(f; a) = b_{m-1} \). Since \(b_{m-1} \) is the coefficient for \((z-a)^{m-1} \) is the power series representation of \(g \), so \(b_{m-1} = g^{(m-1)}(a)/(m-1)! \). \quad \square