Proposition VI.2.2

Let \(f \) be a continuous function on \(D \), where \(D \) is an open disk in the complex plane. Then, \(f \) is analytic if and only if \(f \) is continuous on \(D \) and \(f \) is analytic at \(0 = z \). Since \(f \) is continuous at \(0 = z \) and \(f \) is analytic on \(D \), it is also continuous on \(D \). Consequently, \(f \) is analytic on \(D \).

Proof.

Let \(f \) be a function on \(D \), where \(D \) is an open disk in the complex plane. Then, \(f \) is analytic if and only if \(f \) is continuous on \(D \) and \(f \) is analytic at \(0 = z \). Since \(f \) is continuous at \(0 = z \) and \(f \) is analytic on \(D \), it is also continuous on \(D \). Consequently, \(f \) is analytic on \(D \).

Lemma VI.2.1

Let \(D \) be an open disk in the complex plane. Then, \(f \) is analytic on \(D \) if and only if \(f \) is continuous on \(D \) and \(f \) is analytic at \(0 = z \). Since \(f \) is continuous at \(0 = z \) and \(f \) is analytic on \(D \), it is also continuous on \(D \). Consequently, \(f \) is analytic on \(D \).

Proof.

Let \(f \) be a function on \(D \), where \(D \) is an open disk in the complex plane. Then, \(f \) is analytic if and only if \(f \) is continuous on \(D \) and \(f \) is analytic at \(0 = z \). Since \(f \) is continuous at \(0 = z \) and \(f \) is analytic on \(D \), it is also continuous on \(D \). Consequently, \(f \) is analytic on \(D \).
Lemma V.2.A (continued 2)

Proof (continued).

Lemma V.2.A (continued 1)

Proof (continued).

Proposition V.2.2 (continued)

Proposition V.2.2 (continued).
\[\frac{ze - 1}{e - z} \mid W = \mid (z)^e \mid \] \[\mid z \mid W \leq \mid \frac{(ze - 1)/(e - z)}{\mid z \mid} \mid \]

\begin{proof}

Define \(W \) by

\[\mid (z)^e \mid \]

\[\frac{ze - e}{e - z} \mid W \leq \mid (z)^e \mid \]

Then for \(z \in D \)

\[\mid z \mid > 1 \text{ where } 0 = (e)^f (0) \]

and \(D \) is analytic on \(\{ z \mid |z| > 1 \} \).

\end{proof}

Generalized Schwartz's Lemma

Theorem V.2.5. Let \(f : D \rightarrow D \) be a one to one analytic map of \(D \) onto \(D \) such that \(f(c) = c \).

Then there is a complex \(c \) where \(\mid c \mid = 1 \) such that \(f(z) = z \).

Proof

Apply Proposition 3.2.0. Applying Lemma V.2.4 to both \(f \) and \(f^* \) to both \(f \) and \(f^* \) to both \(f \) and \(f^* \).

Since \(f \) is one to one and onto, then there is such that \(f(z) = z \).

Theorem V.2.5 (continued)

Theorem V.2.5. Let \(f : D \rightarrow D \) be a one to one analytic map of \(D \) onto \(D \) such that \(f(c) = c \).

Then there is a complex \(c \) where \(\mid c \mid = 1 \) such that \(f(z) = z \).

Proof

Apply Proposition 3.2.0. Applying Lemma V.2.4 to both \(f \) and \(f^* \) to both \(f \) and \(f^* \) to both \(f \) and \(f^* \).

Since \(f \) is one to one and onto, then there is such that \(f(z) = z \).