Complex Analysis 1, MATH 5510, Spring 2022

Homework 13, Section VI.3

Due Wednesday, May 4

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook or hypotheses.

- **VI.1.2.** Let G be a bounded region and suppose f is continuous on \overline{G} and analytic on G. Show that if there is a constant $c \ge 0$ such that |f(z)| = c for all $z \in \partial(G)$ then either f is a constant function or f has a zero in G. HINT: Consider f(z)/c, apply the Maximum Modulus Theorem and the Minimum Principle (Exercises IV.3.6 and VI.1.1).
- **VI.1.6.** Suppose that both f and g are analytic on $\overline{B}(0; R)$ with |f(z)| = |g(z)| for |z| = R. Show that if neither f nor g vanishes in B(0; R), then there is a constant λ , $|\lambda| = 1$, such that $f = \lambda g$. HINT: Consider f(z)/g(z) and beware of the set $P = \{z \mid |z| = R \text{ and } f(z) = g(z) = 0\}$. Use Exercise VI.1.2.
- **VI.1S.2. (Bonus)** Prove the Joyal, Labelle, Rahman generalization of the Eneström-Kakeya Theorem: If $p(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree *n* with real coefficients satisfying $a_0 \leq a_1 \leq \cdots \leq a_n$, then all the zeros of *p* lie in $|z| \leq (a_n - a_0 + |a_0|)/|a_n|$. HINT: Consider the function $(1-z)p(z) = f(z) - a_n z^{n+1}$ and mimic the proof of the Eneström-Kakeya Theorem.