Complex Analysis 1, MATH 5510, Spring 2022 Homework 4 REVISED, Sections II.2 and II.3

Due Saturday, February 19

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook or hypotheses.

- **II.2.5.** (a) Prove that if $F \subset X$ is connected then for every pair of points $a, b \in F$ and for each $\varepsilon > 0$ there are points $z_0, z_1, \ldots, z_n \in F$ with $z_0 = a, z_n = b$, and $d(z_{k-1}, z_k) < \varepsilon$ for $1 \leq k \leq n$. Notice the hypothesis of "closed" is not given (or needed) here (Conway includes this as part of the question). HINT: Consider $F' = \{b \in X \mid \text{ there are points } z_0, z_1, \ldots, z_n \in$ F, for some $n \in \mathbb{N}$, with $z_0 = a, z_n = b$, and $d(z_{k-1}, z_k) < \varepsilon\}$. Show that $F' \cap F$ is both open and closed in (F, d).
- **II.2.5.** (b) If F is a set which satisfies the above property then F is not necessarily connected, even if F is closed. Give an example to illustrate this. Explain your answer. HINT: Think asymptotes.
- **II.3.3.** Prove that diam $(A) = \text{diam}(A^-)$. HINT: The diam $(A) \leq \text{diam}(A^-)$ part is easy. For diam $(A^-) \leq \text{diam}(A)$, use the fact that for given $\varepsilon > 0$ there are $x', y' \in A^-$ such that $d(x', y') > \text{diam}(A^-) \varepsilon/2$ (a property of suprema). Also, x' and y' are either in A or limit points of A by Proposition II.3.4(b)