Complex Analysis 1, MATH 5510, Fall 2017

Homework 9, Section III.3

Due: Tuesday, November 21 at 1:40

Show all work!!! Justify every claim and show all computations.

- **III.3.8.** If $T(z) = \frac{az+b}{cz+d}$ is a Möbius transformation, then prove that $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$ if and only if we can choose a, b, c, d to be real numbers. HINT: To show that a, b, c, d can be real, consider $T(0), T(\infty), T^{-1}(0)$, and $T^{-1}(\infty)$. To show that $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$, use Theorem 3.14.
- **III.3.10.** Let $D = \{z \mid |z| < 1\}$. Find all Möbius transformations T such that T(D) = D. These are the transformations which determine hyperbolic geometry in the Poincare disk model for hyperbolic geometry. HINT: Let $\alpha \in D$ be such that $T(\alpha) = 0$. Apply the Symmetry Principle and consider $T(\alpha^*)$.
- **III.3.26(a).** Let $GL_2(\mathbb{C})$ be the multiplicative group of all invertible 2×2 matrices with entries in \mathbb{C} . Let \mathcal{M} be the group of Möbius transformations. Define $\varphi : GL_2(\mathbb{C}) \to \mathcal{M}$ by

$$\varphi\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \frac{az+b}{cz+d}$$

Prove that φ is a group homomorphism of $GL_2(\mathbb{C})$ onto \mathcal{M} . Find the kernel of φ .