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Supplement. Hyperbolic Geometry and the Poincare Disk

Note. Let’s work our way back to geometry. The following definition is from Visual

Complex Analysis by Tristan Needham, Oxford University Press (1997), page 176.

Definition. An automorphism of a region of the complex plane is a one to one

conformal mapping of the region onto itself.

Note. We are interested in automorphisms of the unit disk. We know that certain

Möbius transformations will be some of these automorphisms.

Conway’s Exercise III.3.10. Let D = {z | |z| < 1} and find all Möbius trans-

formations T such that T (D) = D.

Solution. The transformations must be of the form T (z) = eiθ

(

z − α

αz − 1

)

where

|α| < 1.

Note. In fact, the only automorphisms of the unit disc are those given above

[Needham, page 357].

Note. With all this automorphism stuff, groups can’t be far behind. The col-

lection of all Möbius transformations form a group call Aut(C∞). The collection

of Möbious transformations mapping D to D are a subgroup of Aut(C∞)—let’s

denote it Aut(D).
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Note. We now explore the Poincare disk model in detail based on Chapter 5 of

Geometry with an Introduction to Cosmic Topology by Michael Hitchman, Boston:

Jones and Bartlett Publishers (2009). When quoting result’s from Hitchman, we

present the number of the result and add a prefix of ‘H.’ We call the automorphism

group of the unit disk the hyperbolic transformation group and denote it H.

Definition H.5.1.1. The Poincare disk model for hyperbolic geometry is the ge-

ometry (D,H) where D is the open unit disk.

Note. The unit circle is not part of the Poincare disk, but it still plays an important

role. It is called the circle at infinity, denoted S1

∞.

Recall. Corollary H.3.2.6. Let C be a circle with center z0. Inversion in C takes

clines orthogonal to C to themselves (i.e., such clines are fixed by the inversion).

Also: Exercise H.3.2.10. Suppose C and D are orthogonal circles (i.e., they

intersect at two points and the intersection are at right angles). Then inversion in

C takes the interior of D to itself.

These two results combine to give the following picture:
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So if D is the unit disk, then inversion with respect to C maps D to itself and hence

is an element of the hyperbolic transformation group. So inversion with respect to

such clines is fundamental. Notice that if C is a line intersecting the unit circle at

a right angle, then it also maps D to itself.

Definition H.5.1.2. A hyperbolic reflection of D is an inversion in a cline that

meets S1

∞ at right angles.

Theorem H.5.1.3. Any map in H is the composition of two hyperbolic reflections.

Corollary H.5.1.4. Given z0 in D and z1 on S1

∞, there exists a transformation in

H that sends z0 to 0 and z1 to 1.

Proof. This is the transformation T constructed in the proof of Theorem H.5.1.3.
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Note. Since any map in H is a composition of two inversions about clines which

are orthogonal to S1

∞, we can classify the elements of H according to whether these

clines intersect twice, once, or not at all.

Note. If the two clines intersect in D at a point p then they also intersect at p∗

(this follows from the fact that the clines intersect S1

∞ at right angles).

Definition. An element of H which is a composition of two inversions about clines

which intersect in two points (p and p∗) is a hyperbolic rotation about point p.

Note. Let T represent such a hyperbolic rotation. Of course p is fixed under T

(since the two clines involved both pass trough p and inversion with respect to a

cline fixes the cline). T moves points along circles orthogonal to both clines:

Figure 5.3b from Hitchman.
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See Section 3.5 of Hitchman for details.

Note. If the two clines involved in the transformation intersect at one point, then

the point must be on S1

∞ (otherwise the clines would also intersect at p∗).

Definition. An element of H which is a composition of two inversions about clines

which intersect in one point p (on S1

∞) is a parallel displacement.

Note. In parallel displacement, points are moved along circles which pass through

p and are tangent to S1

∞ (and hence are perpendicular to the two clines determining

H). Such circles are called horocycles:

Figure 5.3b from Hitchman.
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Note. If the two clines do not intersect (in which case at least one must be a

circle), then there are two points p and q symmetric with respect to both clines

and on S1

∞ (see Section 3.2 of Hitchman for more details). Such a transformation

moves points along arcs of circles passing through p and q:

Figure 5.3c from Hitchman.

Definition. An element of H which is a composition of two inversions about clines

which do not intersect is a hyperbolic translation.

Exercise H.5.1.5. Prove that any two horocycles are congruent. HINT: Rotate

one circle to the other using the corresponding points “p,” then use a hyperbolic

translation.
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Definition H.5.2.1. A hyperbolic line in (D,H) is the portion of a cline inside D

that intersects the unit circle at right angles. A point on the circle at infinity S1

∞ is

called an ideal point. [Here come a couple of odd definitions.] Two hyperbolic lines

are parallel if they share one ideal point. [The following is not from Hitchman.]

Two hyperbolic lines that do not intersect and do not share an ideal point are

ultraparallel.

Theorem H.5.2.2. Any two hyperbolic lines are congruent in hyperbolic geome-

try.

Theorem H.5.2.3. Given a point z0 and a hyperbolic line L not through z0, there

exists two distinct hyperbolic lines through z0 that are parallel to L.
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Note. Theorem H.5.2.3 certainly violates Playfair’s Theorem (which is equivalent

to the Parallel Postulate). So we are justified in calling hyperbolic geometry (D,H)

non-Euclidean. Notice that there are an infinite number of lines through z − 0

ultraparallel to L—these lines are wedged between the lines through u and v given

in the proof.

Note. We can use three pairwise non-ultraparallel lines to define a (hyperbolic)

triangle. Once we have a metric, we can measure distances and areas. Some results

for triangles are:

Theorem H.5.4.6. The area of a triangle with 3 ideal points as vertices has area

π.

Theorem H.5.4.5. The area of a triangle having two ideal points as vertices and

interior angle α is π − α.

Theorem H.5.4.7. The area of a triangle with interior angles α, β, γ is π − (α +

β + γ).

Figures 5.13, 5.14, and 5.16 from Hitchman.
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Note. The smaller the area of a triangle, the closer its angle sum is to the Euclidean

case of π. Also, we see that the angle sum of a hyperbolic triangle must be less

than π.

Note. Recall that the Euclidean differential of arc length satisfies ds2 = dx2 +dy2.

Introducing x and y axes to the Poincare disk, we find that

ds2 =
dx2 + dy2

(1 − (x2 + y2))2
.

Exercise. Show that the hyperbolic line from (x, y) = (−1, 0) to (x, y) = (1, 0) is

infinite in length.

Note. The curvature of a surface is determined from the “metric coefficients.” In

general, if x and y are a coordinate system on a surface, then the differential of arc

length is

ds2 = g11dx2 + g12dx dy + g21dy dx + g22dy2.

This determines a matrix of metric coefficients:




g11 g12

g21 g22



 .

For Euclidean geometry, the matrix is





1 0

0 1



 . For the Poincare disk, the matrix

is




1/(1 − (x2 + y2))2 0

0 1/(1 − (x2 + y2))2



 .

From these coefficients, one can show the curvature of the Poincare disk is −4.
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