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VII.8. The Riemann Zeta Function.

Note. In this section, we define the Riemann zeta function and discuss its history.

We relate this meromorphic function with a simple pole at z = 1 (see Theorem

VII.8.14) to, of all things, prime numbers.

Note. Let z ∈ C and let n ∈ N. Then

|nz| = | exp(z log n)| = exp(Re(z) log n) = nRe(z).

So
n∑

k=1

|k−z| =
n∑

k=1

exp(−Re(z) log k) =
n∑

k=1

k−Re(z).

So if Re(z) ≥ 1 + ε then

n∑
k=1

|k−z| ≤
n∑

k=1

k−(1+ε) =
n∑

k=1

1

k1+ε

and the series
∑∞

n=1 n−z converges uniformly and absolutely on G = {z | Re(z) ≥

1 + ε} (absolutely by comparing to the p-series with p = 1 + ε > 1 and uniformly

by the Weierstrass M -Test [Theorem II.6.2] with un(z) = n−z for Re(z) ≥ 1 + ε

and Mn = 1/n1+ε). Now each un is continuous on G and so each sum of un’s is

continuous. Since the convergence is uniform, the limit
∑∞

n=1 n−z is continuous on

G. Also, each un is analytic on G, so by Theorem VII.2.1,
∑∞

n=1 un(z) is analytic

on G.

Definition VII.8.1. The Riemann zeta function on {z | Re(z) > 1} is defined as

ζ(z) =
∞∑

n=1

n−z.
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Note. We will eventually extend ζ(z) to a function analytic in whole complex

plane except for z = 1 where it will have a simple pole. The extension is not

accomplished by “analytic continuation” (see Chapter IX), but by relating the zeta

function to the gamma function.

Note. In 1859, Georg Bernhard Riemann published an 8 page paper, “On the Num-

ber of Primes Less Than a Given Magnitude” (Ueber die Anqahl der Primzahlen

unter einer gegenen Grösse). A translation of this paper can be found in the ap-

pendix of H. M. Edwards’ Riemann’s Zeta Function, Academic Press, Inc. (1974)

(this book has now been reprinted by Dover Publications). In the paper, Riemann

comments that it is very likely that the complex zeros of the zeta function all have

real part equal to 1/2, but that he has been unable to prove this [Edwards, page

6]. This conjecture which concerns the distribution of prime numbers is now the

holy grail of open math problems and is known as the Riemann Hypothesis.

Georg Friedrich Bernhard Riemann, 1826–1866

Image from the MacTutor History of Mathematics Archive page on Riemann.

https://mathshistory.st-andrews.ac.uk/Biographies/Riemann/
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Note. We now relate ζ(z) to Γ(z). Recall that, by Theorem VII.7.15, for Re(z) > 0

Γ(z) =

∫ ∞

0
e−ttz−a dt.

By replacing the real variable t with nu where n > 0 (t = nu and dt = n du) we

get

Γ(z) =

∫ ∞

0
e−nu(nu)z−1n du

=

∫ ∞

0
e−nuuz−1nz du

= nz

∫ ∞

0
e−nttz−1 dt (in terms of t)

or

n−zΓ(z) =

∫ ∞

0
e−nttz−1 dt for Re(z) > 0.

If Re(z) > 1 and we sum over n ∈ N, we get

ζ(z)Γ(z) =

( ∞∑
n=1

n−z

)
Γ(z) =

∞∑
n=1

(
n−zΓ(z)

)
=

∞∑
n=1

(∫ ∞

0
e−nttz−1 dt

)
. (8.2)

We want to take the sum inside the integral and simplify. We need some preliminary

results first.

Lemma VII.8.3.

(a) Let S = {z | Re(z) ≥ a} where a > 1. If ε > 0 then there is a number δ,

0 < δ < 1, such that for all z ∈ S we have∣∣∣∣∫ β

α

(et − 1)−1tz−1 dt

∣∣∣∣ < ε

whenever δ > β > α > 0.
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(b) Let S = {z | Re(z) ≤ A} where A ∈ R. If ε > 0 then there is a number κ > 1

such that for all z ∈ S we have∣∣∣∣∫ β

α

(et − 1)−1tz−1 dt

∣∣∣∣ < ε

whenever β > α > κ.

Corollary VII.8.4.

(a) If S = {z | a ≤ Re(z) ≤ A} where 1 < a < A < ∞ then the integral∫ ∞

0
(et − 1)−1tz−1 dt

converges uniformly on S.

(b) If S = {z | Re(z) ≤ A} where −∞ < A < ∞, then the integral∫ ∞

1
(et − 1)−1tz−1 dt

converges uniformly on S.

Note. We now use the uniform convergence of Corollary 8.4 in Equation (8.2).

Note. The following definition and result are from the exercises in Section VII.2.

Definition. Let G be a region, let a ∈ R and suppose that f : [1,∞]×G → C is a

continuous function. The integral F (z) =

∫ ∞

a

f(t, z) dt is uniformly convergent on

compact subsets on G if limb→∞
∫ b

a f(t, z) dt exists uniformly for z in any compact

subset of G.
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Theorem VII.8.A/Exercise VII.2.2. Let G be a region, a ∈ R, f : [a,∞) ×

G → C is a continuous function, and suppose the integral F (z) =
∫∞

a f(t, z) dt

is uniformly convergent on compact subsets of G. Suppose for each t′ ∈ (a,∞),

f(t′, z) is analytic on G. Then F is analytic on G and

F (k)(z) =

∫ ∞

a

∂kf(t, z)

∂zk
dt.

Corollary VII.8.B. Let G be a region, a ∈ R, f : (0, 1]×G → C is a continuous

function, and suppose the integral F (z) =
∫ 1

0 f(t, z) dt is uniformly convergent on

compact subsets of G. Suppose for each t′ ∈ (0, 1], f(t′, z) is analytic on G. Then

F is analytic on G and

F (k)(z) =

∫ ∞

a

∂kf(t, z)

∂zk
dt.

Note. If K is a compact subset of G = {z | Re(z) > 1} then K is closed and

bounded (by the Heine-Borel Theorem) and so K ⊂ {z | a ≤ Re(z) ≤ A} for some

a, A ∈ R with 1 < a ≤ A. With f(t, z) = (et − 1)−1tz−1 = (et − 1)−1e(z−1) log t, we

have that for each t′ ∈ (a,∞), f(t′, z) = (et − 1)−1(t′)z−1 is analytic on G. For

compact set K ⊂ G where K ⊂ {z | a ≤ Re(z) ≤ A} where 1 < a < A < ∞,

so by Corollary VII.8.4(a), F (z) =
∫∞

0 f(t, z) dt =
∫∞

0 (et − 1)−1tz−1 dt converges

uniformly on K and so F (z) is uniformly convergent on compact subsets of G.

Therefore, by Theorem VII.8.A/Exercise VII.2.2, f(z) =
∫∞

0 (et − 1)−1tz−1 dt is

analytic on G.
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Proposition VII.8.5. For Re(z) > 1

ζ(z)Γ(z) =

∫ ∞

0
(et − 1)−1tz−1 dt.

Note. We now extend ζ(z) from {z | Re(z) > 1} to all of C (except z = 1). We

use the relationship between ζ(z) and Γ(z) given in Proposition VII.8.5 to make

this extension.

Note. We now explore the Laurent series for (ez − 1)−1. Notice that

lim
z→0

z(ez − 1)−1 = lim
z→0

z

ez − 1
= lim

z→0

1

ez
= 1

(L’Hôpital’s Rule holds here), so (ez − 1)−1 has a pole of order 1 at z = 0 (see

Definition V.1.6). By Corollary V.1.18(b), the coefficients a−n in the Laurent series

are 0 for −n ≤ −2. By Proposition V.2.4, a−1 = Res((ez − 1)−1; 0) = z(ez −

1)−1
∣∣∣
z=0

= 1 (by the limit argument above). So z(ez − 1)−1 (with the removable

singularity at z = 0 removed) is entire. The coefficient of z in the power series

representation of z(ez − 1)−1 is

[z(ez − 1)−1]′
∣∣∣
z=0

=
(ez − 1)− zez

(ez − 1)2

∣∣∣
z=0

= lim
z→0

ez − ez − zez

2(ez − 1)zz

= lim
z→0

−z

2(ez − 1)
= lim

z→0

−1

2ez
= −1

2
.

So in the Laurent series for (ez − 1)−1, the constant term is −1/2. Therefore, the

Laurent series of (ez − 1)−1 is of the form

1

ez − 1
=

1

z
− 1

2
+

∞∑
n=1

anz
n
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for some a1, a2, . . .. So
1

et − 1
− 1

t
has a limit as t → 0 (its −1/2) and

1

et − 1
− 1

t
remains bounded in a neighborhood of t = 0. But this implies that the integral∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt

converges.

Note. We now extend the definition of ζ from {z | Re(z) > 1} to C \ {1}. We do

so stepwise.

STEP 1. Extend the definition of ζ from {z | Re(z) > 1} to {z | Re(z) > 0}.

STEP 2. Extend the definition of ζ from {z | Re(z) > 0} to {z | Re(z) > −1}.

STEP 3. Extend the definition of ζ from {z | Re(z) > −1} to all of C \ {1}.

This will give ζ as a meromorphic function with a simple pole at z = 1 (see Theorem

VII.8.14). At each step, we extend ζ to a new set which overlaps with a previous

set; we must confirm that the resulting ζ is well-defined. That is, we must confirm

that the definitions are consistent on the overlaps of the sets.

Note. We will explore analytic continuation in Chapter IX. One could use the

definition of ζ on {z | Re(z) > 1} as ζ(z) =
∑∞

n=1 n−z and analytic continuation to

extend it to C \ {1}. However, we follow the steps given above. In fact, this is the

approach taken by Riemann himself. The following quote is from H. M. Edwards’

Riemann’s Zeta Function, Academic Press (1974), page 9:
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It is interesting to note that Riemann does not speak of the “analytic

continuation” of the function
∑

n−s beyond the half plane Re s > 1,

but speaks rather of finding a formula for it which “remains valid for all

s.” This indicates that he viewed the problem in terms more analogous
to the extension [by formulas]. . . than to a piece-by-piece extension of

the function in the manner that analytic continuation is customarily

taught today. The view of analytic continuation in terms of chains of

disks and power series convergent in each disk descends from Weier-

strass and is quite antithetical to Riemann’s basic philosophy that an-

alytic functions should be dealt with globally, not locally in terms of

power series.

Lemma VII.8.C. The function

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt is an analytic function

on G = {z | Re(z) > 0}.

Note. For Re(z) > 0 we have∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt + (z − 1)−1 +

∫ ∞

1

tz−1

et − 1
dt

=

∫ 1

0

tz−1

et − 1
dt−

∫ 1

0
tz−2 dt + (z − 1)−1 −

∫ ∞

1

tz−1

et − 1
dt

=

∫ ∞

0

tz−1

et − 1
dt− 1

z − 1
tz−1

∣∣∣t=1

t=0
+ (z − 1)−1

=

∫ ∞

0

tz+1

et − 1
dt− 1

z − 1
+ (z − 1)−1 =

∫ ∞

0

tz+1

et − 1
dt.

So the first quantity equals ζ(z)Γ(z) for Re(z) > 1 by Proposition VII.8.5. This
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motivates us to extend the definition of ζ from Re(z) > 1 to Re(z) > 0, thus

completing STEP 1 in our extension of ζ.

Definition. For Re(z) > 0 define the Riemann zeta function as

ζ(z) =
1

Γ(z)

(∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt + (z − 1)−1 +

∫ ∞

1

tz−1

et − 1
dt

)
. (8.7)

Note. On Re(z) > 0, ζ is a meromorphic function with a simple pole at z = 1. We

know that

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt is an analytic function on Re(z) > 0 as argued

above and

∫ ∞

1

tz−1

et − 1
dt is uniformly convergent on compact subsets if Re(z) > 0

by Corollary VII.8.4(b) and so is analytic by Theorem VII.8.A/Exercise VII.2.2.

By Proposition V.2.4,

Res(ζ; 1) = (z − 1)ζ(z)
∣∣∣
z=1

= lim
z→1

(z − 1)ζ(z) = 1

(since the analytic functions given by the integrals produce 0 in the limit and only

lim
z→1

z − 1

z − 1
= 1 remains; recall that Γ(1) = 1). That is, the residue of ζ at z = 1 is

1.

Note. We now give an alternative representation of ζ for 0 < Re(z) < 1. For

0 < Re < 1 then

−
∫ ∞

1
tz−2 dt−− tz−1

z − 1

∣∣∣t=∞
t=1

=
1

z − 1
.

So by (8.7)

ζ(z)Γ(z) =

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt−

∫ ∞

1
tz−2 dt +

∫ ∞

1

tz−1

et − 1
dt
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=

∫ ∞

0

tz−1

et − 1
dt for 0 < Re(z) < 1. (8.8)

Lemma VII.8.D. The function

∫ 1

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt is an analytic func-

tion on G = {z | Re(z) > −1}.

Lemma VII.8.E. The function

∫ ∞

1

(
1

et − 1
− 1

t

)
tz−1 dt is an analytic function

on G = {z | Re(z) < 1}.

Note. From (8.8) we have for 0 < Re(z) < 1 that∫ 1

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt− 1

2z
+

∫ ∞

1

(
1

et − 1
− 1

t

)
tz−1 dt

=

∫ ∞

0

(
1

et − 1
− 1

t

)
tz−1 dt +

1

2

∫ 1

0
tz−1 dt− 1

2z

=

∫ ∞

0

(
1

et − 1
− 1

t

)
tz−1 dt +

1

2z
t2
∣∣∣t=1

t=0
− 1

2z

=

∫ ∞

0

(
1

et − 1
− 1

t

)
tz−1 dt = ζ(z)Γ(z).

However, by Lemmas VII.8.D and VII.8.E, the integrals in the first part of this

equation are also valid on {−1 < Re(z) < 1}. This motivates our next definition

which extends ζ to {z | Re(z) > −1} and accomplishes STEP 2 of the extension of

ζ.

Definition. For −1 < Re(z) < 1 define the Riemann zeta function as

ζ(z) =
1

Γ(z)

(∫ 1

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt− 1

2z
+

∫ ∞

1

(
1

et − 1
− 1

t

)
tz−1 dt

)
. (8.9)
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Note. The term 1/(2z) in equation (8.9) makes it appear that ζ may have a

pole at z = 0. Now each of the integrals in (8.9) represents analytic functions

throughout G = {z | −1 < Re(z) < 1}. Also, 1/Γ(z) is analytic on G. Notice that

1/(2zΓ(z)) = 1/(2Γ(z + 1)) by Theorem VII.7.7 (the Functional Equation for Γ),

so 1/(2zΓ(z)) is analytic at z = 0; its value is 1/(2Γ(1)) = 1/2. So ζ is analytic

throughout {z | −1 < Re(z) < 1}.

Theorem VII.8.13. Riemann’s Functional Equation.

For −1 < Re(z) < 0 we have

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin πz/2.

Note. Conway claims that “The same type of reasoning gives that (8.13) holds for

−1 < Re(z) < 1” (page 192). Since the right hand side of Riemann’s Functional

Equation is analytic in all of Re(z) < 0, we use this as STEP 3 in the extension of

ζ to all of C \ {1}.

Definition. For Re(z) < 0 define the Riemann zeta function as

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin

(
1

2
πz

)
.

Note. Notice that, by definition, ζ satisfies Riemann’s Functional Equation for

Re(z) < 0 by definition and satisfies it for −1 < Re(z) < 1 by Conway’s claim

mentioned above. Treating both sides of Riemann’s Functional Equation as analytic
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functions on C\{1} and the fact that both sides are equal on a subset of C\{1} with

a limit point, then by Corollary IV.3.8, the functional equation holds throughout

C \ {1}. We summarize our knowledge of ζ as follows.

Theorem VII.8.14. The zeta function is meromorphic in C with only a simple

pole at z = 1 and Res(ζ; 1) = 1. For z 6= 1, ζ satisfies Riemann’s Functional

Equation.

Note. The gamma function Γ(z) has simple poles at z = 0,−1,−2, . . . and is

never 0. So Γ(1 − z) has simple poles at z = 1, 2, 3, . . .. Now ζ(z) is analytic at

z = 2, 3, 4, . . ., so from Riemann’s Functional Equation,

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin

(
1

2
πz

)
,

we have for z = 2, 4, 6, . . . that ζ(1−z) sin(πz/2) = 0 and the simple pole of Γ(1−z)

cancels with this zero for z = 2, 4, 6, . . . (otherwise ζ(z) would not be analytic at

z = 2, 4, 6, . . .). So ζ(z) 6= 0 for z = 2, 4, 6, . . . (since the other factors of ζ(z) on

the right-hand side of the functional equation are nonzero for these values of z).

Now sin(πz/2) = 0 for z = −2,−4,−6, . . . and Γ(1−z) has no pole at these points,

so ζ(z) = 0 for z = −2,−4,−6, . . .. The points z = −2,−4,−6, . . . are the trivial

zeros of ζ(z). By the way, ζ(0) = −1/2 so this covers all even integer values of z

(where sin(πz/2) is 0).

Note. Conway comments that: “Similar reasoning gives that ζ has no other zeros

outside the closed strip {z | 0 ≤ Re(z) ≤ 1}” (page 193).
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Definition VII.8.16. The points z = −2,−4,−6, . . . are the trivial zeros of ζ and

the strip {z | 0 ≤ Re(z) ≤ 1} is the critical strip.

Note. We are now motivated and have the background to state the Riemann

Hypothesis.

The Riemann Hypothesis. If z is a zero of the zeta function in the critical strip

then Re(z) = 1/2.

Theorem VII.8.17. Euler’s Theorem.

If Re(z) > 1 then

ζ(z) =
∞∏

n=1

1

1− p−z
n

where {pn} is the sequence of prime numbers.

Note. The exercises in the section give several number theoretic properties of ζ(z).

In particular, Exercises VII.8.2–VII.8.5.

Exercise VII.8.2. Use Euler’s Theorem to prove that
∑∞

n=1 p−1
n = ∞. Notice

that this implies that there are an infinite number of primes.

Exercise VII.8.3. Prove that ζ2(z) =
∑∞

n=1 d(n)/nz for Re(z) > 1, where d(n) is

the number of divisors of n.

Exercise VII.8.4. Prove that ζ(z)ζ(z − 1) =
∑∞

n=1 σ(n)/nz for Re(z) > 1, where

σ(n) is the sum of the divisors of n.

Exercise VII.8.5. Prove that ζ(z−1)/ζ(z) =
∑∞

n=1 ϕ(n)/nz for Re(z) > 1, where

ϕ(n) is the number of integers less than n and which are relatively prime to n.
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Note. In the 2005 BBC and the Open University presented the three part docu-

mentary series The Music of the Primes, written by Marcus de Sautoy. In it, the

modular surface of the Riemann zeta function is given.

The modular surface as viewed in the quadrant where

both real and imaginary parts of z are positive.

The nontrivial zeros of ζ indicated by white circles.
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A view out the line Re(z) = 1/2 with the pole at z = 1 visible on the left.

The nontrivial zeros indicated as beams lining up along the line Re(z) = 1/2.



VII.8. The Riemann Zeta Function 16

Note. Another view of the modular surface is given at the Michigan State Uni-

versity website (accessed 4/8/2022):

In this view of the modular surface |ζ(x+ iy)|, the pole is on the left and the trivial

zeros are off in the valley on the left behind the pole. Several of the nontrivial zeros

are visible running off to the right. The nontrivial zeros of ζ with imaginary parts

between 0 and 50 are 1/2 + iy where (to two decimal places) y is: 14.13, 21.02,

25.01, 30.42, 32.94, 37.59, 40.92, 43.33, 48.01, and 49.77 (from “The First 100 (non

trivial) Zeros of the Riemann Zeta Function” webpage; accessed 4/8/2022).

Note. The main purpose of Riemann’s 1859 paper was to find an asymptotic

approximation of π(x), the number of prime numbers less than or equal to x. Two

functions which approximate π(x) are x/ log x and Li(x) =

∫ x

2

dt

log t
. We denote

this “approximation” as π(x) ∼ x/ log x and π(x) ∼ Li(x). We have x log x ∼ Li(x),

so that the claims π(x) ∼ x/ log x and π(x) ∼ Li(x) are equivalent (since ∼ is an

equivalence relation). This approximation problem is called The Prime Number

Theorem, and was proved independently by Jacques Hadamard and Charles de la

Vallée Poussin in 1896. For more details, see my supplemental online notes for

https://archive.lib.msu.edu/crcmath/math/math/r/r316.htm
https://archive.lib.msu.edu/crcmath/math/math/r/r316.htm
http://www.plouffe.fr/simon/constants/zeta100.html
http://www.plouffe.fr/simon/constants/zeta100.html
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use in Elementary Number Theory (MATH 3120) and Number Theory (MATH

5070) on Supplement. The Prime Number Theorem—History. More mathematical

details are given in my online supplemental notes on The Prime Number Theorem

(these notes are in preparation, as of spring 2022). The interest in the Riemann

Hypothesis stems from the fact that the quality of the approximation (that is, the

size of the error term in the approximation) is related to the nontrivial zeros of

the zeta function. Knowing the precise nontrivial zeros of the zeta function yields

a precise formula for ζ(z). For more details, so another of my online supplements

to the number theory classes on Supplement. The Riemann Hypothesis—History.

Another useful and readable source of information on the Prime Number Theorem

and the Riemann Hypothesis is John Derbyshire’s Prime Obsession: Bernhard

Riemann and the Greatest Unsolved Problem in Mathematics, Washington, DC:

Joseph Henry Press (2003); my online supplemental notes heavily quote this source.

Revised: 4/8/2022

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
https://faculty.etsu.edu/gardnerr/5070/Prime-Number-Theorem-notes.htm
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-Riemann-Hypothesis-History.pdf

