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XI.2. The Genus and Order of an Entire Function.

Note. From the Weierstrass Factorization Theorem, we know that an entire func-

tion f with nonzero zeros {a1, a2, . . .} can be factored as f(z) = zmeg(z)
∏∞

n=1 Epn
(z/zn)

where g is entire (so all zeros of f are in the zm and
∏

Epn
(z/an) terms). In this

section we put restrictions on the “rate of growth” of f and consider the resulting

class of functions.

Definition XI.2.1. Let f be an entire function with zeros {a1, a2, . . .} repeated

according to multiplicity and arranged such that |a1| ≤ |a2| ≤ · · ·. Then f is of

finite rank if there is p ∈ Z such that
∑∞

n=1 |an|
−(p+1) < ∞. If p is the least integer

such that this occurs, then f is of rank p. A function with only a finite number of

zeros has rank 0. A function is of infinite rank if it is not of finite rank.

Note. Recall from Theorem VII.5.12 that a sequence {an} such that limn→∞ |an| =

∞, where an 6= 0 for all n ≥ 1, for which no complex number is repeated an

infinite number of times in the sequence for which there is a sequence {pn} of

nonnegative integers such that
∑∞

n=1(r/|zn|)
pn+1 < ∞ for all r > 0, we have that

P (z) =
∏∞

n=1 Epn
(z/a) is an entire function with zeros only at the points an and the

multiplicity of a zero is given by the number of times it is repeated in the sequence.

Here, Ep(z) = (1 − z) exp(z + z2/2 + · · · + zp/p) for p ≥ 1 are the “elementary

functions.”
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Note. Recall that the Weierstrass Factorization Theorem (Theorem VII.5.14)

states that if f is an entire function with nonzero zeros {an} repeated according to

multiplicity and a zero of 0 of multiplicity m, then f(z) = zmeg(z)P (z) where g is

an entire function and P is as given above.

Note. If entire function f has finite rank p and nonzero zeros {an} repeated

according to multiplicity, then be definition there is integer p such that

∞
∑

n=1

|an|
−(p+1) =

∞
∑

n=1

(

1

|an|

)p+1

< ∞.

For r > 0, since limn→∞ |an| = ∞, then r/|an| is “eventually” less than 1 and so
∑∞

n=1 |r/an|
p+1 converges (by the Direct Comparison Test as compared to a geomet-

ric sequence). So with each pn = p, Theorem VII.5.12 gives P (z) =
∏∞

n=1 Ep(z/an)

and the Weierstrass Factorization Theorem (Theorem VII.5.13) gives that f(z) =

zmeg(z)P (z). Now if p1 is any integer larger than the rank, then we similarly have

f(z) = zmeg1(z)P1(z) where P1(z) =
∏∞

n=1 Ep1
(z/an) so that the factorization of f

is not unique.

Definition XI.2.4. Let f be an entire function of rank p with zeros {a1, a2, . . .}.

Then the product P (z) =
∏∞

n=1 Ep(z/an) is the standard form for f .

Note. For f of rank p, the Weierstrass factorization f(z) = zmeg(z)P (z) where P

is standard form for f is unique except that entire function g can be modified by

adding integer multiples of 2πi (but this does not change the factor eg(z)).
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Definition XI.2.5. An entire function f has finite genus if f has finite rank and

if f(z) = zmeg(z)P (z) where P is in standard form for f and the resulting function

g is a polynomial. If p is the rank of f and q if the degree of polynomial g, then

µ = max{p, q} is the genus of f .

Note. Although function g is not uniquely defines, if it is a polynomial then its

degree is uniquely defined, so that the genus of an entire function of finite genus is

well-defined.

Note. The following theorem shows that an entire function of genus µ has a certain

bound on its “rate of growth.”

Theorem XI.2.6. Let f be an entire function of genus µ. For each positive number

α there is a number r0 such that for |z| > r0 we have |f(z)| < exp(α|z|µ+1).

Note. For an entire function f we define the quantity M(r) = max|z|=r{|f(z)|}.

Notice that by the Maximum Modulus Theorem, M(r) is a strictly increasing

function of r. We can interpret Theorem XI.2.6 as saying that entire function

f(z) = zmeg(z)P (z) for which the rate of growth of the zeros of f is restricted (that

is, f is of finite rank) and for which g is a polynomial (that is, f is of finite genus),

then M(r) is dominated (“eventually,” i.e. for |z| > r0) by exp(αrµ+1) for all α > 0

and for µ the genus of f .
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Definition XI.2.13. An entire function f is of finite order if there is a positive

constant a and an r0 > 0 such that |f(z)| < exp(|z|a) for |z| > r0. If such a and

r0 do not exist then f is of infinite order. If f is of finite order then λ = inf{a |

|f(z)| < exp(|z|a) for |z| sufficiently large} is the order of f .

Note. If f has finite order λ, we will see a formula for computing the order in

Proposition XI.2.15 below. In fact, an example of an entire function of order n is

exp(zn).

Proposition XI.2.14. Let f be an entire function of finite order λ. If ε > 0 then

|f(z)| < exp(|z|λ+ε) for all z with |z| sufficiently large, and z can be found with |z|

as large as desired such that |f(z)| ≥ exp(|z|λ+ε).

Note. An easy corollary to Theorem XI.2.6 is the following which follows by taking

α = 1 in Theorem XI.2.6.

Corollary XI.2.16. If f is an entire function of finite genus µ then f is of finite

order λ where λ ≥ µ + 1.

Note. We defined finite genus for functions of finite rank but we defined order for

every entire function (though it might be infinite). Corollary XI.2.16 shows that

finite genus implies finite order. In the next section we will show that finite order

implies finite genus in Hadamard’s Factorization Theorem.
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Note. The next proposition gives a way to compute the order of an entire function.

We leave the proof as Exercise XI.2.A.

Proposition XI.2.15. Let f be an entire function of order λ and let M(r) =

max|z|=r{|f(z)|}. Then

λ = lim sup
r→∞

log log M(r)

log r
.

Example. For f(z) = exp(exp z) = eez

we have

λ = lim sup
r→∞

log log M(r)

log r
= lim

r→∞

log(log eer

)

log r
= lim

r→∞

r

log r
= ∞.

Similarly, for n ∈ N, g(z) = exp(zn) = ezn

is of order n. More generally, if p is a

polynomial of degree n then exp(p(z)) = ep(z) is of order n.

Note. In Ralph Boas’ Entire Functions, Academic Press (1954), the formula in

Proposition XI.2.15 is given as the definition of the order of an entire function. He

went on to give the following definition concerning a “finer” parameter concerning

the rate of growth of an entire function of finite order. See page 8 of Boas’ book.

Definition. Let f be an entire function of positive finite order λ and let M(r) =

max|z|=r{|f(z)|}. then f is of type τ if

τ = lim sup
r→∞

log M(r)

rλ
.

The collection of all functions of exponential type τ , denoted Eτ , includes all entire
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functions of order 1 and type less than or equal to τ , as well as all entire functions

of order less than 1.

Note. The class of all entire functions of exponential type τ forms a “linear space,”

as does the class of all polynomials of degree n or less, denoted Pn.

Note. Boas also relates the order and type of f(z) =
∑∞

n=1 anz
n to the coefficients

an in the following two results. See pages 9–11 of Boas’ book.

Theorem XI.2.A. (Boas’ Theorem 2.2.2.)

The entire function f(z) =
∑∞

n=0 anz
n is of finite order λ if and only if

λ = lim sup
n→∞

n log n

log(1/|an|)
.

Theorem XI.2.B. (Boas’ Theorem 2.2.10.)

Let f(z) =
∑∞

n=0 anz
n and ν = lim supn→∞ n|an|

λ/n. If 0 < ν < ∞ then f is of

order λ and type τ if and only if ν = eτλ.
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