XI.3. Hadamard’s Factorization Theorem.

Note. In this section we give a converse of Corollary XI.2.6. That is, we prove that a function of finite order is of finite genus. We know that a function of finite genus can be factored as $z^n e^{g(z)} \prod_{n=1}^{\infty} E_\mu(z/a_n)$ where g is a polynomial of degree at most μ. This is why the result is called a “factorization theorem.”

Lemma XI.3.1. Let f be a nonconstant entire function of order λ with $f(0) \neq 0$ and let $\{a_1, a_2, \ldots\}$ be the zeros of f repeated according to multiplicity and arranged so that $|a_1| \leq |a_2| \leq \cdots$. If p is an integer such that $p > \lambda - 1$ then

$$\frac{d^p}{dz^p} \left[\frac{f'(z)}{f(z)} \right] = -p! \sum_{n=1}^{\infty} \frac{1}{(a_n - z)^{p+1}}$$

for $z \in \{a_1, a_2, \ldots\}$.

Note. The proof of Lemma XI.3.1 assumes that f has infintely many zeros, but also holds if f only has finitely many zeros.

Theorem XI.3.4. Hadamard’s Factorization Theorem.

If f is an entire function of finite order λ then f has finite genus $\mu \leq \lambda$. Therefore, f can be factored as $f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_\mu(z/a_n)$ where g is a polynomial of degree at most μ.
Note. Picard’s Theorems, to be seen in Sections XII.2 and XII.4, concern the range of analytic functions. We can use Hadamard’s Factorization Theorem to prove a special case of Picard’s Theorem.

Theorem XI.3.6. If f is an entire function of finite order, then f assumes each complex number with one possible exception.

Note. The exponential function $f(z) = e^z$ assumes every value except 0 (see Lemma III.2.A(b)), since a branch of the logarithm can be defined on some region containing any given nonzero complex number. In fact, since e^z is periodic with period $2\pi i$, it assumes each nonzero value an infinite number of times. The following theorem and corollary shows that a similar result holds for certain entire functions of finite order.

Theorem XI.3.7. Let f be an entire function of finite order λ where λ is not an integer. Then f has infinitely many zeros.

Note. If $\alpha \in \mathbb{C}$, then applying Theorem XI.3.7 to $f(z) - \alpha$ we see that f assumes the value α an infinite number of times. This is summarized in the following.

Corollary XI.3.8. If f is an entire function of order λ and λ is not an integer then f assumes each complex value an infinite number of times.

Revised: 11/4/2017