APPLIED MATH II TEST 2 Spring 1997

NAME	STUDENT NUMBER
------	----------------

1. Answer three of the following:

- a. If f(x) has a Fourier series representation valid on the interval $x \in (-l, l)$, then what is the periodic extension, f_{per} , of f? On what interval is the Fourier representation of f equal to f_{per} ?
- b. Give a geometric argument to explain why if $\{X_1, X_2, \dots, \}$ is a set of orthogonal functions on [a, b] and $f(x) = \sum_{n=1}^{\infty} A_n X_n(x)$ on [a, b], then $A_n = \frac{\int_a^b f(x) \overline{X_n(x)} \, dx}{\int_a^b |X_n(x)|^2 \, dx}$ where the inner product is $(f, g) = \int_a^b f \overline{g}$.
- c. Draw a picture of some piecewise continuous function of [0,1] (which is not continuous on [0,1]) and seperately draw its Fourier Series.
- d. State Parseval's Equality.
- e. State the Maximum Principle for harmonic functions.

2. Do one of the following two:

- a. Find a Fourier cosine series for $f(x) = |\sin(x)|$ on $(-\pi, \pi)$, if possible. If not possible, then explain. You may need the equation $\sin A \cos B = \frac{1}{2} \sin(A B) + \frac{1}{2} \sin(A + B)$.
- b. Find the Fourier sine series for f(x) = x on (0, l).

3. Do one of the following two:

- a. The boundary conditions for an ODE on [a,b] with eigenfunctions X_1 and X_2 are symmetric if $X_2'(x)X_1(x) X_2(x)X_1'(x)|_a^b = 0$. Show that if X_1 and X_2 are eigenfunctions corresponding to distinct eigenvalues, then X_1 and X_2 are orthogonal.
- b. The wave equation with homogeneous Neumann BCs on [0, l] has general solution:

$$u(x,t) = \frac{1}{2}A_0 + \frac{1}{2}B_0t + \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l} \right) \cos \frac{n\pi x}{l}.$$

Use this information to solve:

$$u_{tt} = c^2 u_{xx} \text{ for } 0 < x < \pi, t > 0$$
 $u_x(0,t) = u_x(\pi,t) = 0$
 $u(x,0) = 0$
 $u_t(x,0) = \cos^2 x$

HINT:
$$\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos(2x)$$
.

- 4. Do one of the following two:
 - a. Use orthogonality properties to show that if $\Phi(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l}\right)$ on (0, l), then

$$A_m = \frac{2}{l} \int_0^l \Phi(x) \sin\left(\frac{m\pi x}{l}\right) dx.$$

You might need the identity $\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos(2x)$.

- b. Show that if the partial sums of the series $\sum_{n=1}^{\infty} f_n(x)$ converge uniformly on [a,b] to the function f, then the partial sums converge in the L^2 sense as well. WARNING: simple pointwise convergence does not insure convergence of integrals!!!
- 5. HAND IN number 6.1.6.