Chapter 1. Where PDEs Come From

Section 1.1. What is a PDE?

Note. In this section we give some introductory definitions and give some elementary examples.

Note. If $u : \mathbb{R}^2 \to \mathbb{R}$, say u = u(x, y), the denote

$$\frac{\partial u}{\partial x} = u_x, \ \frac{\partial u}{\partial y} = u_y, \ \frac{\partial^2 u}{\partial x^2} = u_{xx}, \ \frac{\partial^2 u}{\partial xy} = u_{yx}, \ \frac{\partial^2 u}{\partial y^2} = u_{yy}$$

Note. Euler's Theorem states:

If u(x, y) and u_x, u_y, u_{xy} , and u_{yx} are defined on an open region containing a point (a, b) and all are continuous at point (a, b) then

$$u_{xy}(a,b) = u_{yx}(a,b).$$

Definition. A first order PDE in the dependent variable u and the independent variables x, y is $F(x, y, u, u_x, u_y) = 0$. A second order PDE in two variables is $F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0$. A solution to either of these two types of PDEs is a function u(x, y) that satisfies the equation in some region in \mathbb{R}^2 .

Note. We assume throughout that mixed partials are equal (and, therefore, that the hypotheses of Euler's Theorem are satisfied).

Definition. An *operator* is a function that maps functions to functions. An operator \mathcal{L} is *linear* if for all functions u, v in the domain of \mathcal{L} , and for all (real) constants a, b we have:

$$\mathcal{L}[au+bv] = a\mathcal{L}[u] + b\mathcal{L}[v].$$

If \mathcal{L} is a linear operator, then the equation $\mathcal{L}[u] = 0$ is a homogeneous linear equation and the equations $\mathcal{L}[u] = g$, where $g \neq 0$ is a function of the independent variable(s), is a nonhomogeneous linear equation.

Example/Definition. The operator $\mathcal{L} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is a linear operator since on the collection of twice differentiable functions of two variables,

$$\mathcal{L}[au+bv] = \frac{\partial^2}{\partial x^2}[au+bv] + \frac{\partial^2}{\partial y^2}[au+bv] = a\frac{\partial^2}{\partial x^2}[u] + b\frac{\partial^2}{\partial x^2}[v] + a\frac{\partial^2}{\partial y^2}[a] + b\frac{\partial^2}{\partial y^2}[v]$$
$$= a\left(\frac{\partial^2}{\partial x^2}[u] + \frac{\partial^2}{\partial y^2}[u]\right) + b\left(\frac{\partial^2}{\partial x^2}[v] + \frac{\partial^2}{\partial y^2}[v]\right) = a\mathcal{L}[u] + b\mathcal{L}[v].$$

This linear operator is called the *Laplacian* which arises in heat and potential problems.

Example/Definition. The PDE $\frac{\partial^2}{\partial x^2}[u] + \frac{\partial^2}{\partial y^2}[u] = 0$ is a homogeneous linear equation called *Laplace's equation* (or the *potential equation*). It describes the distribution of heat at equilibrium. It also describes gravitational and electrostatic potential. A function satisfying Laplace's equation is said to be *harmonic*.

Example. The PDE $u_t + uu_x + y_{xxx} = 0$ (the dispersive wave equation) is nonlinear.

Theorem. If \mathcal{L} is a linear operator and u and v are solutions of $\mathcal{L}[x] = 0$, then any linear combination of u and v is also a solution.

Solution. We are given that $\mathcal{L}[u] = 0$ and $\mathcal{L}[v] = 0$. Let $a, b \in \mathbb{R}$. Then

$$\mathcal{L}[au+bv] = \mathcal{L}[au] + \mathcal{L}[bv] = a\mathcal{L}[u] + b\mathcal{L}[v] = a0 + b0 = 0,$$

so the linear combination au + bv is also a solution of $\mathcal{L}[x] = 0$.

Note/Definition. The above result tells us that any linear combination of solutions of a homogeneous linear PDE is again a solution. This is called the *superposition principle*.

Example. Solve $u_{xx} + u = 0$.

Solution. If this were an ordinary differential equation ("ODE"), then we would have $u(x) = c_1 \cos x + c_2 \sin x$ for arbitrary constants $c_1, c_2 \in \mathbb{R}$. But since here we have u as a function of two variables, u = u(x, y), and the differentiation is with respect to x, then we have the constants here as constant with respect to x so that they are in fact functions of y. So the solution is

$$u(x,y) = f(y)\cos x + g(y)\sin x,$$

where f and g are arbitrary functions of y. \Box

Note. Whereas a second order linear ODE has 2 arbitrary constants, the previous second order linear PDE has two arbitrary functions.

Revised: 3/21/2019