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Chapter 1. Where PDEs Come From

Section 1.1. What is a PDE?

Note. In this section we give some introductory definitions and give some elemen-

tary examples.

Note. If u: R? — R, say u = u(x,y), the denote
ou ou 0*u 0*u 0*u

= Uy, 7 = Uz, = Uyzs, 7 5 — Uyy-
dy V02 oxy Y oy v

Note. Fuler’s Theorem states:

If u(z,y) and wu,,uy, uyy, and wu,, are defined on an open region con-

taining a point (a,b) and all are continuous at point (a,b) then

Ugy(a, b) = uy,(a,b).

Definition. A first order PDE in the dependent variable u and the independent
variables x,y is F(z,y,u, uy,uy) = 0. A second order PDE in two variables is
F(x,y,u, Uy, Uy, Ugg, Uy, Uyy) = 0. A solution to either of these two types of PDEs

is a function u(x,y) that satisfies the equation in some region in R2.

Note. We assume throughout that mixed partials are equal (and, therefore, that

the hypotheses of Euler’s Theorem are satisfied).
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Definition. An operatoris a function that maps functions to functions. An opera-
tor L is linear if for all functions u, v in the domain of £, and for all (real) constants

a,b we have:

Llau + bv] = aL]u] + bL[v].

If £ is a linear operator, then the equation Llu] = 0 is a homogeneous linear
equation and the equations L[u] = g, where g #Z 0 is a function of the independent

variable(s), is a nonhomogeneous linear equation.

2 82
Example/Definition. The operator £ = 7.2 + W is a linear operator since on
L Yy
the collection of twice differentiable functions of two variables,
82 82 82 82 82 82
E[CLU + b"U] = @[CLU + bU] + a—yz[au + bU] = CL@[U] + b@[v] + aa—yz[a] + ba—yz[v]

0? 0? 0? 0?
This linear operator is called the Laplacian which arises in heat and potential

problems.

0? 02
Example/Definition. The PDE WM + WM = 0 is a homogeneous linear
£ )
equation called Laplace’s equation ( or the potential equation). It describes the
distribution of heat at equilibrium. It also describes gravitational and electrostatic

potential. A function satisfying Laplace’s equation is said to be harmonic.

Example. The PDE w;+ut,+ Y. = 0 (the dispersive wave equation) is nonlinear.
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Theorem. If £ is a linear operator and u and v are solutions of L[z] = 0, then

any linear combination of v and v is also a solution.

Solution. We are given that L[u] = 0 and L[v] = 0. Let a,b € R. Then
Llau 4+ bv] = Llau] + L[bv] = aL]u] + bL[v] = a0 + b0 = 0,

so the linear combination au + bv is also a solution of L[z] = 0. 1

Note/Definition. The above result tells us that any linear combination of solu-
tions of a homogeneous linear PDE is again a solution. This is called the superpo-

sitton principle.

Example. Solve u,, +u = 0.

Solution. If this were an ordinary differential equation (“ODE”), then we would
have u(z) = ¢; cosx 4 cosin x for arbitrary constants ¢1, ¢y € R. But since here we
have u as a function of two variables, u = u(x,y), and the differentiation is with
respect to x, then we have the constants here as constant with respect to x so that

they are in fact functions of y. So the solution is
u(z,y) = f(y) cosz + g(y) sinz,
where f and g are arbitrary functions of y. [l

Note. Whereas a second order linear ODE has 2 arbitrary constants, the previous

second order linear PDE has two arbitrary functions.

Revised: 3/21/2019



