Section 1.2. First-Order Linear Equations

Note. In this section, we give some examples of solving PDEs. We primarily make use of certain change of variable "tricks."

Example. Sole the PDE $au_x + bu_y = 0$, where not both a and b are zero.

Solution. We make the change of variables v = ax + by and w = bx - ay. Then by the Chain Rule:

$$u_x = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial v} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial w} \frac{\partial w}{\partial x} = au_v + bu + w$$
$$u_y = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial v} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial w} \frac{\partial w}{\partial y} = bu_v - au_w.$$

Then $au_x + bu_y = (a^2 + b^2)u_v = 0$. So $u_v = 0$ and hence u(v, w) = f(w) = f(bx - ay)where f is an arbitrary differentiable function. So u(x, y) = f(bx - ay). \Box

Example. Solve
$$\begin{cases} u_t + 3u_x = 0\\ u(0, x) = 1 - x^2. \end{cases}$$

Solution. As above, we get u(t, x) = f(3t - x). With t = 0, $f(-x) = 1 - x^2$ which implies $f(x) = 1 - x^2$ and so $f(3t - x) = 1 - (3t - x)^2$ or

$$u(t,x) = 1 - (3t - x)^2 = 1 - 9t^2 + 6tx - x^2.$$

Definition. The gradient of f(x, y) is the vector function $\nabla f = f_x \hat{i} + f_u \hat{j}$. The directional derivative of f in direction \vec{d} (a unit vector) is

$$D_{\vec{d}}[f] = \nabla f \cdot \vec{d} = d_1 f_x + d_2 f_y$$

where $\vec{d} = \langle d_1, d_2 \rangle$.

Example. Page 9 Example 3. Solve $u_x + 2xy^2u_y = 0$.

Solution. This PDE can be interpreted as "the directional derivative of u in the direction $\vec{d} = \langle 1, 2xy^2 \rangle$ is 0" (notice that since the derivative is set equal to 0, the length of \vec{d} need not be 1). So the PDE is satisfied on curves in the *xy*-plane with tangent vectors $\langle 1, 2xy^2 \rangle$. This curves satisfy

$$\frac{dy}{dx} = \frac{2xy^2}{1} = 2xy^2.$$

We have $dy/y^2 = 2x \, dx$ (separating variables) or $-1/y = x^2 + c$ or $y = -1/(c + x^2)$ for some constant c. Notice

$$\frac{d}{dx}\left[u\left(x, -\frac{1}{c+x^2}\right)\right] = u_x + u_y \frac{2x}{(c+x^2)^2} = u_x + 2xy^2 u_y = 0,$$

so u(x,y) is constant on curves of the form $y = -1/(c+x^2)$. Notice that

$$u(x,y)|_{x=0} = u\left(x, -\frac{1}{c+x^2}\right)\Big|_{x=0} = u(0, -1/c).$$

So u(x, y) = u(1, -1/c) on curves $y = -1/(c + x^2)$ and therefore u(x, y) = f(c) for some differentiable function f and where $c = -x^2 = 1/y$. Therefore

$$u(x,y) = f(x^2 + 1/y),$$

where f is an arbitrary differentiable function. \Box

Note. The above process is called the "Geometric Method." I reduces a PDE of the form $a(x,y)u_x + b(x,y)u_y = 0$ to the ODE $\frac{dy}{dx} = \frac{b(x,y)}{a(x,y)}$.

Example. Page 9 Number 7. Solve $au_x + bu_y + cy = 0$.

Solution. We make the change of variables v = ax + by and w = bx - ay, and get (as in the first example of this section)

$$au_x + bu_y + cu = (a^2 + b^2)u_v + cu = 0.$$

We can treat this as a first order ODE in v to get $u(v, w) = g(w)e^{-cv/(a^2+b^2)}$. Therefore

$$u(x,y) = g(bx - ay)e^{-c(ax+by)/(a^2+b^2)}$$

where g is an arbitrary differentiable function. Notice the back of the book gives $u(x,y) = e^{-cx/a}f(bx - ay)$ where f is an arbitrary differentiable function.

Revised: 3/21/2019