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Section 1.3. Flows, Vibrations, and Diffusions

Note. In this section, we derive several examples of PDEs inspired by physical

models. We use some well-known physical principles, like Newton’s Second Law of

Motion, in the derivations.

Note. We first consider the model of “simple transport.” Suppose a fluid flows

through a pipe of fixed cross section at a constant rate of c (spatial unit/temporal

unit). Suppose there is a substance suspended in the fluid with a concentration of

u(x, t) (mass/spatial unit) at position x and time t. Notice that we are ignoring

the friction of the fluid with the pipe and we also assume no diffusion. The amount

of the dissolved substance in the pipe in the segment from x = a to x = b is
∫ b

a
u(x, t) dx and is a function of time. So the amount of substance in the pipe from

x = 0 to x = b at time t is
∫ b

0
u(x, t) dx. At time t+k, this amount of the substance

has moved to the segment of the pipe from x = ch to x = b + ch and so

∫ b

0

u(x, t) dx =

∫ b+ch

ch

u(x, t + h) dx.

Differentiating with respect to b and applying the Fundamental Theorem of Cal-

culus give u(b, t) = u(b + ch, t + h). Differentiating this with respect to h gives

0 = cux(b + ch, t + h) + ut(b + ch, t + h).

At h = 0 we get ut(b, t) + cux(b, t) = 0. Since b is an arbitrary value of x, then

ut(x, t) + xux(x, t) = 0, or simply

ut + cux = 0.
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Note. As seen in Section 1.2, the solution to the PDE ut + cux = 0 is f(x − ct)

wheref is an arbitrary differentiable function. If we have supplemental conditions

(say initial conditions) such as the initial distribution of concentration u(x, 0), then

we need f(x) = u(X, 0). Notice that this implies the following behavior.

Note. We next consider vibrating strings and the wave equation. First, we review

some physics.

Note. If a wire is pulled by its ends with forces of size F adn −F then the wire

attains an internal “force” called tension. Notice that under these conditions, the

wire does not move since the net force is 0. If we cut the wire at some point and

attach a spring scale, then we can measure tension.

Note. Recall that Newton’s Second Law of Motion states:

If a force F is applied to a mass m then the mass experiences an accel-

eration a where F = ma.

In fact, force and acceleration may be vectors, ~F and ~a.
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Note. Now suppose we have a string with ends fixed and that the string is displaced

from the equilibrium. Suppose the string lies along the x-axis at equilibrium and

that u(x, t) represents the displacement of the string at spatial coordinate x and

at time t. We make two assumptions:

(1) The string is perfectly flexible, i.e. it offers no resistance to bending. This

implies that the tension T in the string at a given point is tangent to the

string at the point.

(2) A point on the string moves only in the vertical direction.

We then have:

We let time be fixed and consider the forces on a segment of the string from x to

x+ ∆x. The horizontal force at x due to tension is −T (x) cos α and the horizontal

force at x+ ∆x due to tension is T (x+ ∆x) cos β. By assumptions (1) and (2) and

Newton’s Second law of Motion,

−T (x) cos α + T (x + ∆x) cos β = 0.

By assumption (2), for fixed t, the horizontal component of tension is constant and

so

T (x) cos α = T (x + ∆x) cos β = T (contant)
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and therefore

T (x) =
T

cos α
and T (x + ∆x) =

T

cos β
. (∗)

In the vertical direction we have a net force of

−T (x) sin α + T (x + ∆x) sin β − mg.

By Newton’s Second Law,

−T (x) sin α + T (x + ∆x) sin β − mg = m × acceleration.

Now the acceleration on this segment at x is utt(x, t) and the acceleration at x+∆x

is utt(x+∆x, t) (in our illustration, utt(x+∆x, t) > utt(x, t)) and by the Mean Value

Theorem, the acceleration on this segment is utt(k, t) for some k ∈ [x, x + ∆x]. So

we have

−T (x) sin α + T (x + ∆x) sinβ − mg = mutt(k, t).

By (∗) we get

−T tan α + T tanβ − mg = mutt(k, t).

We now let ρ = m/L be the linear density of the string (where m is the mass of a

segment of the string of length L). Then for the segment x to x + ∆x we get (by

assumption (2)) that m = ρ∆x and so

−T tan α + T tanβ − ρ∆xg = ρ∆xutt(k, t). (∗∗)

Now the slope of u(x, t) (for fixed t) for a given x value in the xu-plane if ∂u/∂x =

ux. Recall that slopes of tangent lines are also equal to tangents of angles of tangent

lines. So tan(α +π) = tan α = ux(x, t) and tan β = ux(x+ ∆x, t). So from (∗∗) we

get

−Tux(x, t) + Tux(x + ∆x, t) = ρ∆xutt(k, t) + ρ∆xg
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for some k ∈ [x, x + ∆x]. Therefore

T
ux(x + ∆x, t) − u(x, t)

∆x
= ρ(utt(k, t) + g).

Letting ∆x → 0 we get that k → x and

Tuxx(x, t) = ρutt(x, t) + ρg, or uxx =
ρ

T
utt +

ρ

T
g.

If we set c2 = T/ρ we get

uxx =
1

c2
utt +

1

c2
g or utt + g = c2uxx.

Note. If we ignore the influence of gravity above then we get the wave equation

utt = c2uxx

where c =
√

T/ρ. The term c is called the wave speed.

Note. We now consider variations of the 1-dimensional wave equation above. If we

assume a resistance due to the medium containing the string which is proportional

to velocity (a common assumption) then we get

utt − c2uxx + Rut = 0 (R > 0).

Of we assume a “transverse elastic force” (which is equivalent to assuming springs

are attached to the string; recall Hooke’s Law of the Spring: If a spring is displaced

from equilibrium by an amount x, then a force of F = kx is exerted by the spring;

k is the “spring constant.”) then we get

utt − c2uxx + ku = 0 (k > 0).
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An externally applied force can produce a nonhomogeneous PDE:

utt − c2uxx = f(x, t).

Note. We temporarily postpone a dimension of the 2-dimensional (and higher

dimensional) wave equation.

Note. We next consider the diffusion equation. We need to first recall the definition

of the divergence of a vector valued function and the Divergence Theorem.

Note. Recall that the divergence of ~v(x, y, z) is

div(~v(x, y, z)) = div(〈M(x, y, z), N(x, y, z), P (x, y, z)〉) = Mx + Ny + Pz.

This is denoted ∇ · ~v.

Theorem. The Divergence Theorem.

Let T be a solid totally bounded by a closed surface S which consists of finitely many

smooth prices. If the components of ~v = ~v(x, y, z) are continuously differentiable

on T , then
∫ ∫

S

~v · ~n ds =

∫ ∫ ∫

T

div(~v) dx dy dz

where ~n is a unit vector normal to surface S.

Note. Consider a motionless fluid in a tube with a substance suspended in the fluid

with concentration u(x, t). Then the amount of suspended substance in the pipe
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from x = x0 to x = x1 is M(t) =
∫ x1

x0

u(x, t) dx and so
dM

dt
=

∫ x1

x0

ut(x, t) dx. Frick’s

Law of Diffusion states that the flow of the suspended substance is proportional to

the concentration gradient (ux(x, t) in this case). So

dM

dt
=





flow in pipe from

x = x0 to x = x1



 − (flow out) = kux(x1, t) = kux(x0, t).

Therefore
∫ x1

x0

ut(x, t) dx = kux(x, t) = kux(x0, t)

and differentiating with respect to x1 gives ut(x1, t) = kuxx(x1, t). Since x1 was

arbitrary, we get

ut = kuxx.

This is the one-dimensional diffusion equation.

Note. In 3 dimensions we get that the rate of change of mass of suspended sub-

stance in a solid domain D with surface S = bdy(D) is

dM

dt
=

∫ ∫ ∫

D

ut dx dy dz (as above)

=

∫ ∫

bdy(D)

~n · (k∇u) ds by Frick’s Law and calculating flow through bdy(D).

By the Divergence Theorem,

div(k∇u) = ∇ · (k∇u) = k∇2u = ut

or

ut = k(uxx + uyy + uzz).
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Note. Finally, we consider heat flow. Recall (maybe from Chemistry class) that

the heat capacity of a solution is the amount of heat energy needed to raise one gram

of the substance 1◦ C. The units are J/g ◦C). Let u(x, y, z, t) be the temperature

and let H(t) be the amount of heat (in J) contained in a solid region D. Then

H(t) =

∫ ∫ ∫

D

cρu dx dy dz

where c is the specific heat and ρ is density of the material. As above,

dH

dt
=

∫ ∫ ∫

D

cρut dx dy dz.

Fourier’s Law (a spiced-up version of Newton’s Law of Cooling) says that heat

energy flows from hot to cold at a rate proportional to the temperature gradient,

∇u. So
dH

dt
=

∫ ∫

bdy(D)

~n · (κ∇u) ds

where κ is a constant (the “heat conductivity”). By the Divergence Theorem,

∇ · (κ∇u) = κ∇2u = cρut

or

cρut = κ(uxx + uyy + uzz).

Notice that at equilibrium ut = 0 and so ∇2u = uxx + uyy + uzz = 0.
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