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Chapter 2. Waves and Diffusions

Note. In this chapter we study the wave and diffusion equations on −∞ < x <∞

(this avoids the study of boundary conditions).

Section 2.1. The Wave Equation

Note. In this section, we state two theorems concerning the wave equation and

give a technique to solve an associated IVP.

Theorem. The general solution of utt = c2uxx, −∞ < x <∞, is

u(x, t) = f(x + ct) + g(x− ct). (3)

That is, (3) is a solution of the PDE and every solution of the PDE is of the form

(3) for some f and g. Notice that f and g must be twice differentiable.

Proof. Notice that we can factor the operator which represents the PDE:

utt − c2uxx =

(

∂

∂t
− c

∂

∂x

) (

∂

∂t
+ c

∂

∂x

)

u = 0.

If we let v = ut + cux then it must be that

(

∂

∂t
− c

∂

∂x

)

v = vt − cvx = 0.

So we have the system of PDEs (which is equivalent to the original ODE):






vt − cvx = 0

ut + cvx = v.
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As we saw in Section 1.2, the solution to vt − cvx = 0 is v(x, t) = h(x + ct) where

h is an arbitrary differentiable function. So we now consider the nonhomogeneous

ODE

ut + cux = h(x+ ct). (4c)

The general solution to the associated homogeneous PDE, ut+cux = 0, is g(x−ct).

Now consider f defined such that f ′ = h(2c). Then

(

∂

∂t
+ c

∂

∂x

)

f(x + ct) = 2cf ′(x+ ct) = h(x+ ct).

So f defined as 1/(2c)
∫

h (an anitiderivative of h) is a solution to the nonhomo-

geneous ODE (4c) (since h is arbitrary differentiable, f is arbitrary twice differen-

tiable). Therefore, as with ODEs (the proof is similar and uses linear operators)

the general solution to the given PDE is

u(x, t) = f(x+ ct) + g(x− ct)

where f and g are arbitrary twice differentiable functions.

Theorem. Consider the IVP






utt = c2uxx for x ∈ R

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

This IVP has a unique solution.

Proof. We have seen that the general solution of the PDE utt = c2uxx is

u(x, t) = f(x+ ct) + g(x− ct).
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With t = 0 we get ϕ(x) = f(x) + g(x) and ψ(x) = cf(′(x) + xg′(x). Differentiating

ϕ and dividing ψ by c gives

ϕ′ = f ′ + g′ and
1

c
ψ = f ′ − g′,

or




1 1

1 −1









f ′

g′



 =





ϕ′

1
2
ψ



 .

This is a system of two unknowns in two equations and has the unique solution

f ′ =
1

2

(

ϕ′ +
ψ

c

)

and g′ =
1

2

(

ϕ′ −
ψ

c

)

.

Integrating we get

f(s) =
1

2
ϕ(s) +

1

2s

∫

s

0

ψ(x) dx + A and g(s) =
1

2
ϕ(s) −

1

2s

∫

s

0

ψ(x) dx +B

for constants A and B. Now

ϕ(x) = f(x) + g(x)

=

(

1

2
ϕ(x) +

1

2c

∫

x

0

ψ + A

)

+

(

1

2
ϕ(x) −

1

2c

∫

x

0

ψ + B

)

= ϕ(x) + A+ B.

So we must have A+B = 0. so taking s = x+ct in the formula for f and s = x−ct

in the formula for g gives

u(x, t) = f(x+ ct) + g(x− ct)

=

(

1

2
ϕ(x + ct) +

1

2c

∫

x+ct

0

ψ(s) ds+A

)

+

(

1

2
ϕ(x− ct) −

1

2c

∫

x+ct

0

ψ(s) ds+ B

)

or

u(x, t) =
1

2
(ϕ(x + ct) + ϕ(x− ct)) +

1

2c

∫

x+ct

x−ct

ψ(s) ds.
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Example. Page 35 Example 2. Consider the IVP































utt = c2uxx for x ∈ R

u(x, 0) = ϕ(x) =







b− b|x|
a

for |x| < a

0 for |x| ≥ a

u(x, 0) = ψ(x) = 0.

Find the solution. This is called the “three finger pluck.”

Solution. The solution is

u(x, t) =
1

2
(ϕ(x + ct) + ϕ(x− ct))+

1

2c

∫

x+ct

x−ct

ψ(s) ds =
1

2
(ϕ(x + ct) + ϕ(x− ct)) .

Now we get (see page 36 for some details; this is Figure 2.1.2 from page 36):
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