
2.3. The Diffusion Equation 1

Section 2.3. The Diffusion Equation

Note. Recall the Diffusion Equation: ut − kuxx, k > 0. In this section, we study

some general properties of this equation and in the next section we find the general

solution for −∞ < x < ∞.

Theorem. The Maximum Principle.

If u(x, t) is a solution to the diffusion equation in the region R = {(x, t) | x ∈

[0, `], t ∈ [0, T ]} then the maximum value of u(x, t) is assumed at either t = 0 or

x = 0 or x = ` (i.e., on the boundary of the region).

Proof. Let M be the maximum of u(x, t) for t− 0, x− 0, or x = `. Let ε > 0 and

let v(x, t) = u(x, t) + ε + x2. Since 0 ≤ x ≤ `, v(x, t) ≤ u(x, t) + ε`2 on R. Also

vt − kvxx = ut − k(u + εx2

xx = ut − kuxx − 2kε = −2kε < 0. (2)

Now suppose v(x, t) attains its maximum at (x0, t0) ∈ int(R) = {(x, t) | x ∈

(0, `), t ∈ (0, T )}. Then it must be that grad(v) = ∇v = vx + vt = 0 at (x0, t0).

Also, holding t constant at t = t0 (taking a cross section), we need u(x, t0) to be

concave down and so uxx(x0, t0) < 0. However, this contradicts (2). So thee cannot

be a maximum in int(R). Now suppose v has a maximum on {(x, t) | x ∈ (0, `)}.

Then vx(x0, T ) = 0 and vxx(x0, T ) ≤ 0. Now for δ > 0 (where T0 − δ > 0) we have

vt(x0, T ) = lim
δ→0+

v(x0, T ) − v(x0, T0 − δ)

δ
≥ 0.

But then vt − kvxx ≥ 0, contradicting (2).

Therefore the maximum of v occurs on either t − 0, x = 0, or x = `. Let S
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denote this set {(x, t) | t = 0, or x = 0, or x = `}. Then

max
R

v(x, t) = max
S

v(x, t) = max
S

(u(x, t) + εx2) = M + ε`2.

Therefore,

u(x, t) = v(x, t) − εx2 ≤ (M + ε`2) − εx2 = M + ε(`2 − x2)

and so u(x, t) ≤ M on R.

Note/Definition. The above is the weak version of the Maximum Principle. The

strong version states that the maximum which occurs on the boundary cannot also

occur on the interior (the proof is much more difficult then the weak version).

Note. We can also prove that u(x, t) attains its minimum on the boundary (ap-

plying the Maximum Principle to −u(x, t)). Next, for a uniqueness result.

Theorem. The nonhomogeneous Dirichlet problem for the diffusion equation,

ut − kuxx = f(x, t) for 0 < x < `, t > 0






u(x, 0) = ϕ(x)

u(0, t) = g(t), u(`, t) = h(t)

has at most one solution (for the given functions f , ϕ, g, and h.

Proof. Suppose not, suppose u1 and u2 are both solutions. Consider w = u1 − u2.

Then

wt − kwxx = ((u1)t − k(u1)xx) = ((u2)t − k(u2)xx) = f(x, t) = f(x, t) = 0
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and

w(x, 0) = u1(x, 0) − u2(x, 0) = ϕ(x) = ϕ(x) = 0,

w(0, t) = u1(0, t) = u2(0, t) = g(t) − g(t) = 0,

w(`, t) = u1(`, t) − u2(`, t) = h(t) − h(t) = 0.

So w = 0 on the boundary of R = {(x, t) | 0 ≤ x ≤ `, t ≥ 0} and by the Maximum

Principle, w(x, t) ≤ 0 on region R. Similarly, by the Minimum Principle w(x, t) ≥ 0

on R. Therefore w = 0 on R and u1 = u2.

Note. We can also give a proof of the previous uniqueness theorem using the

“energy method.”

Proof. As above, let w = u1 − u2. Then

0 = 0w = (wt − kwxx)w =

(

1

2
w2

)

t

+ (−kwxw)x + kw2

x

and so

0 =

∫ `

0

0 dx =

∫ `

0

(

1

2
w2

)

t

dx − kwxw

∣

∣

∣

∣

x=`

x=0

+ k

∫ `

0

w2

x dx.

Now w(0, t) = u1(0, t)− u2(0, t) = g(t)− g(t) = 0 and w(`, t) = u1(`, t)− u2(`, t) =

h(t) − h(t) = 0, so

d

dt

[
∫ `

0

1

2
w2 dx

]

= −k

∫ `

0

(wx)
2 dx ≤ 0 since k > 0.

So
∫ `

0
w2 dx is a decreasing function of time on

∫ `

0

(w(x, t))2 dx ≤

∫ `

0

(w(x, 0))2 dx (4)

for t ≥ 0. But w(x, 0) = u1(x, 0)−u2(x, 0) = ϕ(x)−ϕ(x) = 0 so
∫ `

0
(w(x, t))2 dx = 0

and w(x, t) ≡ 0. Therefore u1x, t) = u2(x, t).
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Note. Finally, we now address stability. We employ the “L2 norm.” For a square

integrable function f on the interval [0, `] we have the L2 norm of f :

‖f‖2 =

{
∫ `

0

|f(x)|2 dx

}1/2

.

Theorem. Consider the BVPs

(1)



















ut − kuxx = f(x, t), 0 < x < `, t > 0

u(x, 0) = ϕ1(x)

u(0, t) = g(t); u(`, t) = h(t)

and

(2) {u(x, 0) = ϕ2(x).

If u1(x, t) is a solution to (1) and u2(x, t) is a solution to (2) then

‖u1 − u2‖2 ≤ ‖ϕ1 − ϕ2‖2

for all t.

Proof. From (4) above we see that the result follows.

Note. In fact, the previous result also holds for the “L∞ norm.” For continuous

function f on the interval [0, `] we have the L∞ norm of f :

‖f‖∞ = max{|f(x)| | x ∈ [0, `]}.
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Theorem. Consider the BVPs

(1)



















ut − kuxx = f(x, t), 0 < x < `, t > 0

u(x, 0) = ϕ1(x)

u(0, t) = g(t); u(`, t) = h(t)

and

(2) {u(x, 0) = ϕ2(x).

If u1(x, t) is a solution to (1) and u2(x, t) is a solution to (2) then

‖u1 − u2‖infty ≤ ‖ϕ1 − ϕ2‖∞

for all t.

Proof. If we have u1 is a solution to (1) and u2 a solution to (2) then u1 − u2 is a

solution to the IVP


















ut − kuxx = f(x, t), 0 < x < `, t > 0

u(x, 0) = ϕ1(x) − ϕ2(x)

u(0, t) = u(`, t) = 0.

By the Maximum Principle,

u1(x, t) − u2(x, t) ≤ max |ϕ1 − ϕ2|

and by the Minimum Principle,

u1(x, t) − u2(x, t) ≥ −min |ϕ1 − ϕ2|

throughout the interior of region R. Therefore,

‖u1 − u2‖∞ = max
0≤x≤`

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤`

|ϕ1(x) = ϕ2(x)| = ‖ϕ1 − ϕ2‖∞

for t > 0.
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