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Section 5.2. Even, Odd, Periodic, and Complex Functions

Note. Notice that the text discusses several easy properties of even and odd

functions on pages 109-111. We give a related definition and result.

Definition. The periodic extension of a Fourier series of ¢ valid on —¢ < z < £ is

eper(x) = @(x — 20m) for 2(m — £ < x < 2m + { and m € Z.

Theorem. If ¢ has a full Fourier series on (—¢,¢) then
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Proof. First notice that
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Note. The above theorem is just a reformulation of the full Fourier series based

on the identities
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