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Section 5.3. Orthogonality and General Fourier Series

Note. In this section, we consider inner products and give a definition of sym-
metric boundary conditions. We then state and prove some theorems concerning

symmetric boundary conditions.

Definition. The inner product of two functions f and g on [a, b] is

(f,9) :/ f(x)g(x) dx.

If (f,g) =0 then f and g are orthogonal.

Note. For operator A we have the boundary conditions:

1. Dirichlet: X;(a) = X;1(b) = Xs(a) = X3(b) = 0.

2. Neumann: Xj(a) = X{(b) = Xj(a) = X5(b) = 0.

3. Periodic: Xi(a) = X31(b), Xa(a) = X5(b), X{(a) = X{(b), X}(a) = X}(b).

4. Robin: X{(a) + aXi(a) = 0= X{(b) + 5X1(b), X}(a) + aXs(a) =0 = X5(b) +
BX(b).

In each case, we can verify that if \; # Ao, then

()\2 — )\1)(X1,X2) = ()\2 — )\1) /b X1 Xodr = /b ((—)\1X1)X2 + Xl()\QXQ)) dx

b b
= / (=X Xy + X, XU dw = / (—X| Xy + X, X3)' d.
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Definition. Boundary conditions for an ODE on [a, b] with eigenfunctions X; and

Xy are symmetric if

(X3(2) X:1(2) — Xo(2)X{(2))[2 = 0.

Note. Each of the boundary conditions above are symmetric.

Theorem 1(a). Symmetric boundary conditions implies that eigenfunctions of

A = d?/dx? corresponding to distinct eigenvalues are orthogonal.

Proof. Let X; and X, be eigenfunctions of A with corresponding eigenvalues \;

and Ao where A\; # Xo. Then —X{ Xy + X7 X = (—X] + X7 X)) and so
b
(o — o) (X1, Xa) = / (= XU X0+ X1 X)) dz = (=X!Xo+ X, X))

This is called Green’s second identity. The claim follows. |

Theorem 1(b). With the hypotheses of Theorem 1(a), any function expanded in

a series of the eigenfunctions has coefficients uniquely determined.

Proof. Let X,, be the eigenfunctions with eigenvalues A,,. If o(z) =3 | A, X, (x),

then
(0, Xm) = (Z A X, Xm) = (AnX, X)) = A (X, Xip).
n=1 n=1

So Ap, = (¢, Xin) / (X, Xin) is uniquely determined, as claimed. 1
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Note. If there are two linearly independent function sX; and X, corresponding
to eigenvalues \; = A9, then by the Gram-Schmidt process, we can product two

orthogonal functions X; and Xj corresponding to A\; = As.

Note. We now consider complex eigenfunctions. If f and g are complex valued

functions of a real variable, then define the inner product

(f,9) :/ f(ﬂf)mdx

Theorem 2. With symmetric boundary conditions, all eigenvalues are real and

furthermore, all eigenfunctions can be chosen to be real valued.

Proof. Let A be an eigenvalue of the operator A = d?/dx? and let X () be a
corresponding eigenfunction. Then X” = AX and X = AX. So X is also an
eigenvalue and by Green’s second identity we have

- _ - _, b
(XX + XX )de = (-X'X+XX)| =0,

a

since the boundary conditions are symmetric. So (A—\) f; XXdr=0,but XX =
|X|?> > 0 and since X is an eigenfunction, X # 0. Therefore A = X and so ) is real,
as claimed. Next, if X” = AX and X =Y +iZ, then X is also an eigenfunction.
We can “replace” X and X with Y and Z (see page 117). i
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