Section 5.3. Orthogonality and General Fourier Series

Note. In this section, we consider inner products and give a definition of symmetric boundary conditions. We then state and prove some theorems concerning symmetric boundary conditions.

Definition. The *inner product* of two functions f and g on [a, b] is

$$(f,g) = \int_a^b f(x)g(x) \, dx.$$

If (f,g) = 0 then f and g are orthogonal.

Note. For operator A we have the boundary conditions:

- **1.** Dirichlet: $X_1(a) = X_1(b) = X_2(a) = X_2(b) = 0.$
- **2.** Neumann: $X'_1(a) = X'_1(b) = X'_2(a) = X'_2(b) = 0.$
- **3.** Periodic: $X_1(a) = X_1(b), X_2(a) = X_2(b), X'_1(a) = X'_1(b), X'_2(a) = X'_2(b).$
- **4.** Robin: $X'_1(a) + \alpha X_1(a) = 0 = X'_1(b) + \beta X_1(b), X'_2(a) + \alpha X_2(a) = 0 = X'_2(b) + \beta X_2(b).$

In each case, we can verify that if $\lambda_1 \neq \lambda_2$, then

$$(\lambda_2 - \lambda_1)(X_1, X_2) = (\lambda_2 - \lambda_1) \int_a^b X_1 X_2 \, dx = \int_a^b \left((-\lambda_1 X_1) X_2 + X_1 (\lambda_2 X_2) \right) \, dx$$
$$= \int_a^b (-X_1'' X_2 + X_1 X_2'') \, dx = \int_a^b (-X_1' X_2 + X_1 X_2')' \, dx.$$

Definition. Boundary conditions for an ODE on [a, b] with eigenfunctions X_1 and X_2 are *symmetric* if

$$(X_2'(x)X_1(x) - X_2(x)X_1'(x))|_a^b = 0.$$

Note. Each of the boundary conditions above are symmetric.

Theorem 1(a). Symmetric boundary conditions implies that eigenfunctions of $A = d^2/dx^2$ corresponding to distinct eigenvalues are orthogonal.

Proof. Let X_1 and X_2 be eigenfunctions of A with corresponding eigenvalues λ_1 and λ_2 where $\lambda_1 \neq \lambda_2$. Then $-X_1''X_2 + X_1X_2'' = (-X_1' + X_1X_2')'$ and so

$$(\lambda_2 - \lambda_2)(X_1, X_2) = \int_a^b (-X_1''X_2 + X_1X_2'') \, dx = (-X_1'X_2 + X_1X_2') \Big|_a^b \, dx$$

This is called *Green's second identity*. The claim follows.

Theorem 1(b). With the hypotheses of Theorem 1(a), any function expanded in a series of the eigenfunctions has coefficients uniquely determined.

Proof. Let X_n be the eigenfunctions with eigenvalues λ_n . If $\varphi(x) = \sum_{n=1}^{\infty} A_n X_n(x)$, then

$$(\varphi, X_m) = \left(\sum_{n=1}^{\infty} A_n X_n, X_m\right) = \sum_{n=1}^{\infty} (A_n X_n, X_m) = A_m(X_m, X_m).$$

So $A_m = (\varphi, X_m)/(X_m, X_m)$ is uniquely determined, as claimed.

Note. If there are two linearly independent function sX_1 and X_2 corresponding to eigenvalues $\lambda_1 = \lambda_2$, then by the Gram-Schmidt process, we can product two orthogonal functions X_1^* and X_2^* corresponding to $\lambda_1 = \lambda_2$.

Note. We now consider complex eigenfunctions. If f and g are complex valued functions of a real variable, then define the inner product

$$(f,g) = \int_{a}^{b} f(x)\overline{g(x)} \, dx.$$

Theorem 2. With symmetric boundary conditions, all eigenvalues are real and furthermore, all eigenfunctions can be chosen to be real valued.

Proof. Let λ be an eigenvalue of the operator $A = d^2/dx^2$ and let X(x) be a corresponding eigenfunction. Then $X'' = \lambda X$ and $\overline{X}'' = \overline{\lambda} \overline{X}$. So $\overline{\lambda}$ is also an eigenvalue and by Green's second identity we have

$$\in_a^b \left(-X''\overline{X} + X\overline{X}'' \right) dx = \left(-X'\overline{X} + X\overline{X}' \right) \Big|_a^b = 0,$$

since the boundary conditions are symmetric. So $(\lambda - \overline{\lambda}) \int_a^b X \overline{X} \, dx = 0$, but $X \overline{X} = |X|^2 \ge 0$ and since X is an eigenfunction, $X \not\equiv 0$. Therefore $\lambda = \overline{\lambda}$ and so λ is real, as claimed. Next, if $X'' = \lambda X$ and X = Y + iZ, then \overline{X} is also an eigenfunction. We can "replace" X and \overline{X} with Y and Z (see page 117).

Revised: 3/23/2019