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Section 5.3. Orthogonality and General Fourier Series

Note. In this section, we consider inner products and give a definition of sym-

metric boundary conditions. We then state and prove some theorems concerning

symmetric boundary conditions.

Definition. The inner product of two functions f and g on [a, b] is

(f, g) =

∫

b

a

f(x)g(x) dx.

If (f, g) = 0 then f and g are orthogonal.

Note. For operator A we have the boundary conditions:

1. Dirichlet: X1(a) = X1(b) = X2(a) = X2(b) = 0.

2. Neumann: X ′
1
(a) = X ′

1
(b) = X ′

2
(a) = X ′

2
(b) = 0.

3. Periodic: X1(a) = X1(b), X2(a) = X2(b), X ′
1
(a) = X ′

1
(b), X ′

2
(a) = X ′

2
(b).

4. Robin: X ′
1
(a) + αX1(a) = 0 = X ′

1
(b) + βX1(b), X ′

2
(a) + αX2(a) = 0 = X ′

2
(b) +

βX2(b).

In each case, we can verify that if λ1 6= λ2, then

(λ2 − λ1)(X1, X2) = (λ2 − λ1)

∫

b

a

X1X2 dx =

∫

b

a

((−λ1X1)X2 + X1(λ2X2)) dx

=

∫

b

a

(−X ′′
1
X2 + X1X

′′
2
) dx =

∫

b

a

(−X ′
1
X2 + X1X

′
2
)′ dx.
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Definition. Boundary conditions for an ODE on [a, b] with eigenfunctions X1 and

X2 are symmetric if

(X ′
2
(x)X1(x) − X2(x)X ′

1
(x))|

b

a
= 0.

Note. Each of the boundary conditions above are symmetric.

Theorem 1(a). Symmetric boundary conditions implies that eigenfunctions of

A = d2/dx2 corresponding to distinct eigenvalues are orthogonal.

Proof. Let X1 and X2 be eigenfunctions of A with corresponding eigenvalues λ1

and λ2 where λ1 6= λ2. Then −X ′′
1
X2 + X1X

′′
2

= (−X ′
1
+ X1X

′
2
)′ and so

(λ2 − λ2)(X1, X2) =

∫

b

a

(−X ′′
1
X2 + X1X

′′
2
) dx = (−X ′

1
X2 + X1X

′
2
)|

b

a
.

This is called Green’s second identity. The claim follows.

Theorem 1(b). With the hypotheses of Theorem 1(a), any function expanded in

a series of the eigenfunctions has coefficients uniquely determined.

Proof. Let Xn be the eigenfunctions with eigenvalues λn. If ϕ(x) =
∑∞

n=1
AnXn(x),

then

(ϕ,Xm) =

(

∞
∑

n=1

AnXn, Xm

)

=

∞
∑

n=1

(AnXn, Xm) = Am(Xm, Xm).

So Am = (ϕ,Xm)/(Xm, Xm) is uniquely determined, as claimed.
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Note. If there are two linearly independent function sX1 and X2 corresponding

to eigenvalues λ1 = λ2, then by the Gram-Schmidt process, we can product two

orthogonal functions X∗
1

and X∗
2

corresponding to λ1 = λ2.

Note. We now consider complex eigenfunctions. If f and g are complex valued

functions of a real variable, then define the inner product

(f, g) =

∫

b

a

f(x)g(x) dx.

Theorem 2. With symmetric boundary conditions, all eigenvalues are real and

furthermore, all eigenfunctions can be chosen to be real valued.

Proof. Let λ be an eigenvalue of the operator A = d2/dx2 and let X(x) be a

corresponding eigenfunction. Then X ′′ = λX and X
′′

= λX. So λ is also an

eigenvalue and by Green’s second identity we have

∈b

a (−X ′′X + XX
′′
) dx = (−X ′X + XX

′
)
∣

∣

∣

b

a

= 0,

since the boundary conditions are symmetric. So (λ−λ)
∫

b

a
XX dx = 0, but XX =

|X |2 ≥ 0 and since X is an eigenfunction, X 6≡ 0. Therefore λ = λ and so λ is real,

as claimed. Next, if X ′′ = λX and X = Y + iZ, then X is also an eigenfunction.

We can “replace” X and X with Y and Z (see page 117).
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