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Section 5.4. Completeness

Note. In this section, we explore some of the theory of Fourier series and state

several theorems (and prove a few of them).

Definition. The series
∑∞

n=1
fn(x) converges to f(x) pointwise on (a, b) if for each

x∗ ∈ (a, b) we have limN→∞

∑

N

n=1
f(x∗) = f(x∗).

Definition. The series
∑∞

n=1
fn(x) converges uniformly on [a, b] if

lim
N→∞

(

max
a≤x≤b

∣

∣

∣

∣

∣

f(x) −

N
∑

n=1

fn(x)

∣

∣

∣

∣

∣

)

= 0.

Definition. The series
∑∞

n=1
fn(x) converges in the L2 sense on (a, b) if

lim
N→∞





∫

b

a

∣

∣

∣

∣

∣

f(x) =
N
∑

n=1

fn(x)

∣

∣

∣

∣

∣

2

dx



 = 0.

Theorem 1. There are an infinite number of eigenvalues for d2/dx2 with any

symmetric boundary conditions. They form a sequence satisfying λn → ∞.

Definition. The Fourier coefficients for f(x) on (a, b) in terms of eigenfunctions

X1, X2, . . . are

An =

∫

b

a
f(x)Xn(x) dx
∫

b

a
|Xn(x)|2 dx

and the Fourier series is
∑∞

n=1
AnXn(x).
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Theorem 2. Uniform Convergence Theorem.

The series
∑∞

n=1
AnXn(x) converges to f uniformly on [a, b] if

1. f , f ′, and f ′′ exist and are continuous for a ≤ x ≤ b, and

2. f satisfies the given symmetric boundary conditions.

Theorem 3. L2 Convergence Theorem.

The series
∑∞

n=1
AnXn(x) converges to f in the L2 sense in (a, b) if and only if f is

any function for which
∫

b

a

|f(x)|2 dx < ∞.

Note. Theorem 3 holds for Lebesgue integrals.

Theorem 4. Pointwise Convergence of Classical Fourier Series.

(i) The classical Fourier series (i.e., full, since, or cosine) converges to f pointwise

on (a, b) if f is continuous on a ≤ x ≤ b and f ′ is piecewise continuous on

a ≤ x ≤ b.

(ii) If f and f ′ are piecewise continuous on a ≤ x ≤ b and then the classical Fourier

series converges at every point of R and the sum is

∞
∑

n=1

=
1

2
(f(x+) + f(x−)) for a < x < b

and converges to 1

2
(fext(x

+) + fext(x
−)) for all x ∈ R where where fext is the

extended function (periodic, odd periodic, or even periodic).



5.4. Completeness 3

Theorem 5. Let {Xn} be any orthogonal set of functions. Let ‖f‖2 < ∞. Let N

be a given positive integer. Among all possible choices of N constants c1, c2, . . . , cN ,

the choice that minimizes

∥

∥

∥

∥

∥

f −
N
∑

n=1

cnxn

∥

∥

∥

∥

∥

2

is ci as the Fourier coefficients.

Proof. Let

En =

∥

∥

∥

∥

∥

f −

N
∑

n=1

cnXn

∥

∥

∥

∥

∥

2

2

=

∫

b

a

∣

∣

∣

∣

∣

f −

N
∑

n=1

cnXn

∣

∣

∣

∣

∣

2

dx

=

∫

b

a

|f |2 − 2
N
∑

n=1

cn

∫

b

a

fXn +
N
∑

n=1

N
∑

m=1

cncm

∫

b

a

XnXm

= ‖f‖2

2 − 2

N
∑

n=1

cn(f,Xn) +

N
∑

n=1

c2

n
‖Xn‖

2 =

N
∑

n=1

‖Xn‖
2

2

(

cn −
(f,Xn)

‖Xn‖2
2

)2

+ ‖f‖2

2

and En is minimal when cn = (f,Xn)/‖Xn‖
2
2, as claimed.

Corollary. Bessel’s Inequality.

With the above notation,
∞
∑

n=1

An‖Xn‖
2

2 ≤ ‖f‖2

2.

Proof. With cn = An above, we get

En = ‖f‖2

2 −
N
∑

n=1

(f,Xn)

‖Xn‖2
2

= ‖f‖2

2 =
N
∑

n=1

A2

n
‖Xn‖

2

2

and so
N
∑

n=1

A2

n‖Xn‖
2

2 ≤ ‖f‖2

2

for all N and the claim holds.
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Theorem 6. Parseval’s Equality.

The Fourier series of f converges to f in the L2 sense if and only if
∞
∑

n=1

|An|
2‖Xn‖

2

2 = ‖f‖2

2.

Definition. The orthogonal set of functions {X1, X2, . . .} is complete if Parseval’s

Equality holds for all f with
∫

b

a
|f |2 dx < ∞.

Corollary 7. If
∫

b

a
|f |2 < ∞ then Parseval’s Equality holds.

Example. Page 131 Number 12. Find

∞
∑

n=1

1

n2
.

Solution. Well,

x =
2`

π

∞
∑

n=1

(−1)n+1

n
sin

nπx

`

(see Page 106 Example 3) and so by Parseval’s Equality
∫

`

0

|x|2 dx =

∞
∑

n=1

∣

∣

∣

∣

2`

πn

∣

∣

∣

∣

2 ∫ `

0

sin2 nπx

`
dx.

With ` = 1,
∫

1

0

x2 dx =
∞
∑

n=1

( e

nπ

)2
∫

1

0

sin2 nπx dx

or

1

3
=

4

π2

∞
∑

n=1

1

n2

∫

1

0

1 − cos 2nπx

2
dx =

4

π2

∞
∑

n=1

1

n2

(

x

2
−

1

2nπ
sin 2nπx

)
∣

∣

∣

∣

1

0

=
4

π2

∞
∑

n=1

1

n2

(

1

2
− 0

)

=
2

π2

∞
∑

n=1

1

n2
,

and so

∞
∑

n=1

1

n2
=

π2

6
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