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Section 5.4. Completeness

Note. In this section, we explore some of the theory of Fourier series and state

several theorems (and prove a few of them).

Definition. The series > f.(z) converges to f(x) pointwise on (a,b) if for each

z* € (a,b) we have limy_. S0, f(z*) = f(z).
Definition. The series >~ f.(z) converges uniformly on [a, b] if

):0.

Definition. The series >_°7 | f.(x) converges in the L* sense on (a,b) if

b
lim
N—o00 a

lim | max
N—oo \ a<x<b

2

f(x) = an(x) de | =0.

Theorem 1. There are an infinite number of eigenvalues for d?/dz? with any

symmetric boundary conditions. They form a sequence satisfying A\, — oo.

Definition. The Fourier coefficients for f(x) on (a,b) in terms of eigenfunctions

X1, X9, ... are L
o 12 f(2) X (x) dx
S () 2 da
and the Fourier series is >~ | A, X,,(2).
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Theorem 2. Uniform Convergence Theorem.

The series > | A, X, (z) converges to f uniformly on [a, b] if
1. f, f/, and f” exist and are continuous for a < z < b, and

2. f satisfies the given symmetric boundary conditions.

Theorem 3. L? Convergence Theorem.
The series Y > | A, X, (x) converges to f in the L? sense in (a,b) if and only if f is
any function for which

b
/ F(2)[2dz < oo.

Note. Theorem 3 holds for Lebesgue integrals.

Theorem 4. Pointwise Convergence of Classical Fourier Series.

(i) The classical Fourier series (i.e., full, since, or cosine) converges to f pointwise
on (a,b) if f is continuous on a < z < b and f’ is piecewise continuous on

a <z <b.

(ii) If f and f’ are piecewise continuous on a < z < b and then the classical Fourier

series converges at every point of R and the sum is

(0.9]

3 - %(f(x*) b @) fora <z <b

n=1
and converges to %( fext(zT) + fext(z7)) for all z € R where where fext is the

extended function (periodic, odd periodic, or even periodic).



5.4. Completeness

Theorem 5. Let {X,} be any orthogonal set of functions. Let || f||2 < co. Let N

be a given positive integer. Among all possible choices of N constants ¢y, ¢y, . ..

the choice that minimizes is ¢; as the Fourier coefficients.

N
f - Z CnTn
n=1

2

Proof. Let
N 2 b N 2
En:||chan :/ f—chXn dx
n=1 9 a n=1
b N b N N b
=/ |f|2_220n/ an+Zchcm/ XnXom
a n=1 a n=1 m=1 a

yCN,

: : : (F.X)\?
— I8 =23 el )+ SN = 1l (e = o) + 118
n=1 n=1 n=1 nii2

and E, is minimal when ¢, = (f, X,,)/|| X3, as claimed.

Corollary. Bessel’s Inequality.
With the above notation,

> ANXlB < 15
n=1

Proof. With ¢, = A,, above, we get

(£, X,) .
By = 1115 =3 gy = 18 = 32 AR
n=1 ni2 n=1

and so
N
> CAX5 < 113
n=1

for all N and the claim holds.
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Theorem 6. Parseval’s Equality.

The Fourier series of f converges to f in the L? sense if and only if

> A1 X3 = (1 £113.
n=1

Definition. The orthogonal set of functions { X1, Xo, ...} is complete if Parseval’s

Equality holds for all f with ff |f|?dx < .

Corollary 7. If ff | f|? < oo then Parseval’s Equality holds.

— 1
Example. Page 131 Number 12. Find Z —

Solution. Well,

2€ (=)™t nmx
T = sin

T n 14
n=1

(see Page 106 Example 3) and so by Parseval’s Equality

¢ > 1 2¢1? nwx
/ |:z:|2d:z::Z — / sin? —= da.
0 — ™ 0 E
With ¢ =1,
1 o e 9 1
/ 22 dr = Z (—) / sin’ nrx dx
0 n=1 nm 0
or
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