Section 5.4. Completeness

Note. In this section, we explore some of the theory of Fourier series and state several theorems (and prove a few of them).

Definition. The series $\sum_{n=1}^{\infty} f_n(x)$ converges to $f(x)$ pointwise on (a, b) if for each $x^* \in (a, b)$ we have $\lim_{N \to \infty} \sum_{n=1}^{N} f(x^*) = f(x^*).$

Definition. The series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [a, b] if

$$
\lim_{N \to \infty} \left(\max_{a \le x \le b} \left| f(x) - \sum_{n=1}^{N} f_n(x) \right| \right) = 0.
$$

Definition. The series $\sum_{n=1}^{\infty} f_n(x)$ converges in the L^2 sense on (a, b) if

$$
\lim_{N \to \infty} \left(\int_a^b \left| f(x) = \sum_{n=1}^N f_n(x) \right|^2 dx \right) = 0.
$$

Theorem 1. There are an infinite number of eigenvalues for d^2/dx^2 with any symmetric boundary conditions. They form a sequence satisfying $\lambda_n \to \infty$.

Definition. The Fourier coefficients for $f(x)$ on (a, b) in terms of eigenfunctions X_1, X_2, \ldots are

$$
A_n = \frac{\int_a^b f(x) \overline{X_n(x)} dx}{\int_a^b |X_n(x)|^2 dx}
$$

and the Fourier series is $\sum_{n=1}^{\infty} A_n X_n(x)$.

Theorem 2. Uniform Convergence Theorem.

The series $\sum_{n=1}^{\infty} A_n X_n(x)$ converges to f uniformly on $[a, b]$ if

1. f, f', and f'' exist and are continuous for $a \leq x \leq b$, and

2. f satisfies the given symmetric boundary conditions.

Theorem 3. L^2 Convergence Theorem.

The series $\sum_{n=1}^{\infty} A_n X_n(x)$ converges to f in the L^2 sense in (a, b) if and only if f is any function for which

$$
\int_a^b |f(x)|^2 \, dx < \infty.
$$

Note. Theorem 3 holds for Lebesgue integrals.

Theorem 4. Pointwise Convergence of Classical Fourier Series.

- (i) The classical Fourier series (i.e., full, since, or cosine) converges to f pointwise on (a, b) if f is continuous on $a \leq x \leq b$ and f' is piecewise continuous on $a \leq x \leq b$.
- (ii) If f and f' are piecewise continuous on $a \leq x \leq b$ and then the classical Fourier series converges at every point of $\mathbb R$ and the sum is

$$
\sum_{n=1}^{\infty} = \frac{1}{2}(f(x^{+}) + f(x^{-}))
$$
 for $a < x < b$

and converges to $\frac{1}{2}(f_{ext}(x^+) + f_{ext}(x^-))$ for all $x \in \mathbb{R}$ where where f_{ext} is the extended function (periodic, odd periodic, or even periodic).

Theorem 5. Let $\{X_n\}$ be any orthogonal set of functions. Let $||f||_2 < \infty$. Let N be a given positive integer. Among all possible choices of N constants c_1, c_2, \ldots, c_N , the choice that minimizes \parallel $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $f - \sum$ \breve{N} $n=1$ $c_n x_n$ \parallel $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ \parallel_2 is c_i as the Fourier coefficients.

Proof. Let

$$
E_n = \left\| f - \sum_{n=1}^N c_n X_n \right\|_2^2 = \int_a^b \left| f - \sum_{n=1}^N c_n X_n \right|^2 dx
$$

$$
= \int_a^b |f|^2 - 2 \sum_{n=1}^N c_n \int_a^b f X_n + \sum_{n=1}^N \sum_{m=1}^N c_n c_m \int_a^b X_n X_m
$$

$$
= \|f\|_2^2 - 2 \sum_{n=1}^N c_n (f, X_n) + \sum_{n=1}^N c_n^2 \|X_n\|^2 = \sum_{n=1}^N \|X_n\|_2^2 \left(c_n - \frac{(f, X_n)}{\|X_n\|_2^2} \right)^2 + \|f\|_2^2
$$

and E_n is minimal when $c_n = (f, X_n)/||X_n||_2^2$ $2₂$, as claimed.

Corollary. Bessel's Inequality.

With the above notation,

$$
\sum_{n=1}^{\infty} A_n ||X_n||_2^2 \le ||f||_2^2.
$$

Proof. With $c_n = A_n$ above, we get

$$
E_n = ||f||_2^2 - \sum_{n=1}^N \frac{(f, X_n)}{\|X_n\|_2^2} = ||f||_2^2 = \sum_{n=1}^N A_n^2 \|X_n\|_2^2
$$

and so

$$
\sum_{n=1}^{N} A_n^2 \|X_n\|_2^2 \le \|f\|_2^2
$$

for all N and the claim holds.

П

Ш

Theorem 6. Parseval's Equality.

The Fourier series of f converges to f in the L^2 sense if and only if

$$
\sum_{n=1}^{\infty} |A_n|^2 ||X_n||_2^2 = ||f||_2^2.
$$

Definition. The orthogonal set of functions $\{X_1, X_2, \ldots\}$ is *complete* if Parseval's Equality holds for all f with $\int_a^b |f|^2 dx < \infty$.

Corollary 7. If $\int_a^b |f|^2 < \infty$ then Parseval's Equality holds.

Example. Page 131 Number 12. Find \sum ∞ $n=1$ 1 $\frac{1}{n^2}$.

Solution. Well,

$$
x = \frac{2\ell}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{\ell}
$$

(see Page 106 Example 3) and so by Parseval's Equality

$$
\int_0^\ell |x|^2 \, dx = \sum_{n=1}^\infty \left| \frac{2\ell}{\pi n} \right|^2 \int_0^\ell \sin^2 \frac{n\pi x}{\ell} \, dx.
$$

With $\ell = 1$,

$$
\int_0^1 x^2 dx = \sum_{n=1}^\infty \left(\frac{e}{n\pi}\right)^2 \int_0^1 \sin^2 n\pi x dx
$$

or

$$
\frac{1}{3} = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \int_0^1 \frac{1 - \cos 2n\pi x}{2} dx = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{x}{2} - \frac{1}{2n\pi} \sin 2n\pi x \right) \Big|_0^1
$$

$$
= \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{1}{2} - 0 \right) = \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2},
$$

and so \sum $n=1$ $\overline{n^2}$ 6

Revised: 3/23/2019