Chapter 6. Harmonic Functions

Section 6.1. Laplace's Equation

Note. In this section, we explore a common second order PDE and state some theorems related to it.

Note. At equilibrium in the wave and diffusion equations, $u_t = 0$ and these equations reduce to the Laplace equation

$$
u_{xx} = 0
$$

$$
\Delta u = u_{xx} + u_{yy} = 0
$$

$$
\Delta u = u_{xx} + u_{yy} + u_{zz} = 0.
$$

Definition. A solution to Laplace's equation is said to be *harmonic*.

Definition. *Poisson's equation* is the nonhomogeneous version of Laplace's equation: $\Delta u = f$.

Theorem. The Maximum Principle.

Let D be a connected bounded open set (in \mathbb{R}^2 or \mathbb{R}^3). Let $u(x, y)$ (or $u(x, y, z)$) be harmonic in D and continuous in $\overline{D} = D \cup b \, dy(D)$. Then the maximum and minimum values of n are attained on $\text{bdy}(D)$ and nowhere in D unless u is constant.

Theorem. The Uniqueness of Solutions to the Dirichlet Problem.

The Dirichlet problem

 $\Delta u = f$ in open connected D $u = h$ on the boundary of D

has at most one solution.

Proof. Suppose not, suppose both u and v are solutions. Then $u - v$ is a solution to

$$
\Delta u = 0
$$
 in open connected D

$$
u = 0
$$
 on the boundary of D

and so by the Maximum Principle (since $u - v$ is harmonic), the maximum and minimum of $u - v$ both occur on bdy(D) and are therefore 0. So $u = v$. П

Definition. A *translation* in \mathbb{R}^2 is a transformation

$$
x' = x + a
$$

$$
y' = y + b.
$$

A rotation in \mathbb{R}^2 through angle α is a transformation

$$
x' = x \cos \alpha + y \sin \alpha
$$

$$
y' = -x \sin \alpha + y \cos \alpha.
$$

Theorem. Invariance in 2-Dimensions.

The Laplace Equation is invariant under translations and rotations in \mathbb{R}^2 (i.e., $u_{xx} + u_{yy} = u_{x'x'} + u_{y'y'}$.

Note. The proof of the above theorem is given on pages 150 and 151. In the proof, it is shown that in polar coordinates (r, θ) the Laplace operator satisfies:

$$
\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}
$$

.

Example. Page 154 Number 5. Solve

$$
\begin{cases} u_{xx} + u_{yy} = 1 \text{ for } r < a \\ u = 0 \text{ for } r = a, \end{cases}
$$

where r represents a distance from the origin (so r is a polar coordinate).

Solution. We search for a "rotationally invariant" solution (i.e., one independent of θ). In polar coordinates, the PDE becomes

$$
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = 1 \text{ or } u_{rr} + \frac{1}{r} u_r = 1 \text{ or } ru_{rr} + u_r = r.
$$

By the Product Rule, this becomes $(r u_r)_r = r$ and so $r u_r = \frac{1}{2}$ $\frac{1}{2}r^2 + c_1$ or $u_r =$ 1 $rac{1}{2}r + c_1/r$ and hence $u = \frac{1}{4}$ $\frac{1}{4}r^2 - c_1 \log r + c_2$. Since $u = 0$ for $r = a$ we require 1 $\frac{1}{4}a^2 - c_1 \log a + c_2 = 0$, so we get $c_2 = c_1 \log a - \frac{1}{4}$ $\frac{1}{4}a^2$. So the solution in terms of parameter c_1 is

$$
u(r,\theta) = \frac{1}{4}r^2 - c_1\log r + c_1\log a - \frac{1}{4}a^2.
$$

Revised: 3/23/2019