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Section 1.6. Estimation of Regression Function—Proofs of Theorems
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Theorem 1.6.A

Theorem 1.6.A

Theorem 1.6.A. For data points (Xi ,Yi ) where i = 1, 2, . . . , n, the values
of β0 and β1 which minimize

Q =
n∑

i=1

(Yi − β0 − β1Xi )
2

are

b1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
and b0 =

1

n

(
n∑

i=1

Yi − b1

n∑
i=1

Xi

)
= Y−b1X ,

respectively.

Proof. We define Q as a function of β0 and β1 (in terms of the given
data (Xi ,Yi )):

Q(β0, β1) =
n∑

i=1

(Yi − β0 − β1Xi )
2.
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Theorem 1.6.A

Theorem 1.6.A (continued 1)

Proof. To find critical points of Q, we consider the partial derivatives:

∂Q

∂β0
=

n∑
i=1

−2(Yi − β0 − β1Xi ) and
∂Q

∂β1
=

n∑
i=1

−2Xi (Yi − β0 − β1Xi ).

Expanding the partial derivatives:

∂Q

∂β0
=

n∑
i=1

−2(Yi − β0 − β1Xi ) =
n∑

i=1

(−2Yi + 2β0 + 2β1Xi )

= −2
n∑

i=1

Yi + 2nβ0 + 2β1

n∑
i=1

Xi

and

∂Q

∂β1
=

n∑
i=1

−2Xi (Yi −β0−β1Xi ) = −2
n∑

i=1

XiYi +2β0

n∑
i=1

Xi +2β1

n∑
i=1

X 2
i .
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Theorem 1.6.A

Theorem 1.6.A (continued 2)

Proof. Setting each partial derivative equal to 0 gives the following two
equations in unknowns β0 and β1:

nβ0 + β1

n∑
i=1

Xi =
n∑

i=1

Yi (∗)

and

β0

n∑
i=1

Xi + β1

n∑
i=1

X 2
i =

n∑
i=1

XiYi . (∗∗)

(These are called the normal equations.) This is a system of two linear
equations in two unknowns and has solution β0 = b0 and β1 = b1 where:

b1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
and b0 =

1

n

(
n∑

i=1

Yi − b1

n∑
i=1

Xi

)
= Y−b1X .
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Theorem 1.6.A

Theorem 1.6.A (continued 3)

Proof. Finally, we need to check a second partial derivative of Q(β0, β1)
at the critical point (b0, b1). We have

∂2Q

∂β2
1

=
∂

∂β1

[
∂Q

∂β1

]
=

∂

∂β1

[
−2

n∑
i=1

XiYi + 2β0

n∑
i=1

Xi + 2β1

n∑
i=1

X 2
i

]

= 2β0

n∑
i=1

X 2
i > 0.

So by the Second Derivative Test for Local Extreme Values (see my online
Calculus 3 [MATH 2110] notes on Section 14.7. Extreme Values and
Saddle Points, the critical point (β0, β1) = (b0, b1) yields a local
minimum. Since there is only one critical point, this must yield an
absolute (or “global”) minimum.
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Theorem 1.6.B

Theorem 1.6.B

Theorem 1.6.B. For data points (Xi ,Yi ) where i = 1, 2, . . . , n, estimated
regression model Ŷ = b0 + b1X , and residuals ei = Yi − Ŷi , we have the
following properties.

1. The sum of the residuals is zero:
∑n

i=1 ei = 0.

2. The sum of the squared residuals,
∑n

i=1 e2
i , is a minimum.

3. The sum of the observed values Yi equals the sum of the
fitted values Ŷi :

∑n
i=1 Yi =

∑n
i=1 Ŷi .

4. The sum of the weighted residuals is zero when the residual
in the ith trial is weighted by the level of the predictor
variable in the ith trial. That is,

∑n
i=1 Xiei = 0.

5. The sum of the weighted residuals is zero when the ith trial
is weighted by the fitted value of the response variable for
the ith trial. That is,

∑n
i=1 Ŷiei = 0.

6. The regression line always goes through the point (X ,Y ).
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Theorem 1.6.B

Theorem 1.6.B (continued 1)

Theorem 1.6.B. For data points (Xi ,Yi ) where i = 1, 2, . . . , n, estimated
regression model Ŷ = b0 + b1X , and residuals ei = Yi − Ŷi , we have the
following properties.

1. The sum of the residuals is zero:
∑n

i=1 ei = 0.

Proof. (1) The ith residual is (by definition) ei = Yi − Ŷi and the
estimated regression model is Ŷ = b0 + b1X , so

n∑
i=1

ei =
n∑

i=1

(Yi − Ŷi ) =
n∑

i=1

(Yi − (b0 − b1Xi ))

=
n∑

i=1

Yi −
n∑

i=1

b0 + b1

n∑
i=1

Xi =
n∑

i=1

Yi − nb0 − b1

n∑
i=1

Xi = 0,

as claimed, since
∑n

i=1 Yi = nb0 + b1
∑n

i=1 Xi by the first normal equation
given as (∗) in the proof of Theorem 1.6.A above.
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Theorem 1.6.B

Theorem 1.6.B (continued 2)

Theorem 1.6.B. For data points (Xi ,Yi ) where i = 1, 2, . . . , n, estimated
regression model Ŷ = b0 + b1X , and residuals ei = Yi − Ŷi , we have the
following properties.

2. The sum of the squared residuals,
∑n

i=1 e2
i , is a minimum.

3. The sum of the observed values Yi equals the sum of the
fitted values Ŷi :

∑n
i=1 Yi =

∑n
i=1 Ŷi .

Proof (continued). (2) By Theorem 1.6.A, the values of β0 and β1 that
minimize quantity Q =

∑n
i=1(Yi − β0 − β1Xi )

2 are b0 and b1, respectively.
When we replace β0 and β1 with b0 and b1, respectively, we get that the
minimum quantity is

∑n
i=1(Yi − b0 − b1Xi )

2. Now Ŷi = b0 − b1Xi , so the
minimum quantity is

∑n
i=1(Yi − Ŷi )

2 =
∑n

i−1 e2
i , as claimed.

(3) The proof of this is to be given in Exercise 1.35.
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2. Now Ŷi = b0 − b1Xi , so the
minimum quantity is

∑n
i=1(Yi − Ŷi )
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Theorem 1.6.B

Theorem 1.6.B (continued 3)

Theorem 1.6.B. For data points (Xi ,Yi ) where i = 1, 2, . . . , n, estimated
regression model Ŷ = b0 + b1X , and residuals ei = Yi − Ŷi , we have the
following properties.

4. The sum of the weighted residuals is zero when the residual
in the ith trial is weighted by the level of the predictor
variable in the ith trial. That is,

∑n
i=1 Xiei = 0.

Proof (continued). (4) Since ei = Yi − Ŷi , then ei = Yi − (b0 + b1Xi )
and

n∑
i=1

Xiei =
n∑

i=1

Xi (Yi − b0 − b1Xi )) =
n∑

i=1

XiYi − b0

n∑
i=1

Xi − b1

n∑
i=1

X 2
i .

Now
∑n

i=1 XiYi = b0
∑n

i=1 Xi + β1
∑n

i=1 X 2
i by the second normal

equation given as (∗∗) in the proof of Theorem 1.6.A above. Therefore,∑n
i=1 Xiei = 0, as claimed.
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Theorem 1.6.B

Theorem 1.6.B (continued 4)

Theorem 1.6.B. For data points (Xi ,Yi ) where i = 1, 2, . . . , n, estimated
regression model Ŷ = b0 + b1X , and residuals ei = Yi − Ŷi , we have the
following properties.

5. The sum of the weighted residuals is zero when the ith trial
is weighted by the fitted value of the response variable for
the ith trial. That is,

∑n
i=1 Ŷiei = 0.

6. The regression line always goes through the point (X ,Y ).

Proof (continued). (5) The proof of this is to be given in Exercise 1.36.

(6) By Note 1.6.B, the alternative form of the estimated regression model
(i.e., the regression line) is Ŷ = Y + b1(X − X ). So when the predictor
variable X takes on the value X , we have

Ŷ = Y + b1(X − X ) = Y .

That is, the regression line goes through the point (X ,Y ), as claimed.
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(i.e., the regression line) is Ŷ = Y + b1(X − X ). So when the predictor
variable X takes on the value X , we have
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