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Lemma 2.1.A

Lemma 2.1.A

Lemma 2.1.A. Statistic b1 is a linear combination of the observations Yi :

b1 =
n∑

i=1

kiYi where ki =
Xi − X∑n

i=1(Xi − X )2
.

Proof. First, we have
n∑

i=1

(Xi − X )(Yi − Y ) =
n∑

i=1

(Xi − X )Yi −
n∑

i=1

(Xi − X )Y .

But
n∑

i=1

(Xi − X )Y = Y
n∑

i=1

(Xi − X ) = Y
n∑

i=1

(
Xi −

n∑
i=1

Xi/n

)

= Y

(
n∑

i=1

Xi −
n∑

i=1

Xi

)
= 0.

() Applied Linear Statistical Models, Part 1 October 1, 2022 3 / 10



Lemma 2.1.A

Lemma 2.1.A

Lemma 2.1.A. Statistic b1 is a linear combination of the observations Yi :

b1 =
n∑

i=1

kiYi where ki =
Xi − X∑n

i=1(Xi − X )2
.

Proof. First, we have
n∑

i=1

(Xi − X )(Yi − Y ) =
n∑

i=1

(Xi − X )Yi −
n∑

i=1

(Xi − X )Y .

But
n∑

i=1

(Xi − X )Y = Y
n∑

i=1

(Xi − X ) = Y
n∑

i=1

(
Xi −

n∑
i=1

Xi/n

)

= Y

(
n∑

i=1

Xi −
n∑

i=1

Xi

)
= 0.

() Applied Linear Statistical Models, Part 1 October 1, 2022 3 / 10



Lemma 2.1.A

Lemma 2.1.A (continued)

Proof (continued). So

n∑
i=1

(Xi −X )(Yi −Y ) =
n∑

i=1

(Xi −X )Yi −
n∑

i=1

(Xi −X )Y =
n∑

i=1

(Xi −X )Yi .

Then we have

b1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
=

∑n
i=1(Xi − X )Yi∑n
i=1(Xi − X )2

=
n∑

i=1

kiYi ,

where ki =
Xi − X∑n

i=1(Xi − X )2
, as claimed.
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Gauss-Markov Theorem for Normal Error Regression Model

Theorem 1.11

Theorem 1.11. The Gauss-Markov Theorem for the Normal Error
Regression Model.
Consider the data points (Xi ,Yi ) for i = 1, 2, . . . , n and the normal error
linear regression model Yi = β0 + β1X1 + εi given in (1.1) with the added
hypothesis that each error term has a N(0, σ2) distribution. The least
squares estimators

b1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
and b0 =

1

n

(
n∑

i=1

Yi − b1

n∑
i=1

Xi

)
= Y−b1X

are unbiased (that is, E{b0} = β0 and E{b1} = β1) and have minimum
variance among all unbiased linear estimators (i.e., linear combinations of
the Yi ).

Proof. First we have by Lemma 2.1.A and the linearity of expectation (see
my online notes for Mathematical Statistics 1 [STAT 4047/5047] on
Section 1.8. Expectation of a Random Variables; notice Theorem 1.8.2)
we have: . . .
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Gauss-Markov Theorem for Normal Error Regression Model

Theorem 1.11 (continued 1)

Proof (continued). . . .

E{b1} = E

{
n∑

i=1

kiYi

}
=

n∑
i=1

kiE{Yi}

=
n∑

i=1

ki (β0 + β1Xi ) = β0

n∑
i=1

ki + β1

n∑
i=1

kiXi = β1,

because
n∑

i=1

ki = 0 by (2.5) and
n∑

i=1

kiXi = 1 by Exercise 2.50, as claimed.

Recall that for independent Yi , we have σ2

(
n∑

i=1

aiYi

)
=

n∑
i=1

a2
1σ

2(Yi );

see equation A.31 in Appendix A or my online notes on Mathematical
Statistics 1 on Section 1.8. Expectation of a Random Variables (see
Theorem 1.8.2) and on Section 1.9. Some Special Expectations (see
Theorem 1.9.1). We use this to find σ{b1}.
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Gauss-Markov Theorem for Normal Error Regression Model
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Gauss-Markov Theorem for Normal Error Regression Model

Theorem 1.11 (continued 2)

Proof (continued). We now have by Lemma 2.1.A and (2.7) of Note
2.1.A that

σ2{b1} = σ2

{
n∑

i=1

kiYi

}
=

n∑
i=1

k2
i σ2{Yi}

=
n∑

i=1

k2
i σ2 = σ2 1∑n

i=1(Xi − X )2
.

Next, we need to show that among all unbiased linear estimators of β1 of
the form β̂1 =

∑n
i=1 ciYi , the one of minimum variance is the one for

which ci = ki for i = 1, 2, . . . , n. Since β̂1 must be unbiased, then

E{β̂1} = E

{
n∑

i=1

ciYi

}
=

n∑
i=1

ciE{Yi} = β1.
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Gauss-Markov Theorem for Normal Error Regression Model

Theorem 1.11 (continued 3)

Proof (continued). We know E{Yi} = β0 + β1Xi by Note 1.3.A, so we
now have

E{β̂1} =
n∑

i=1

ciE{Yi} =
n∑

i=1

ci (β0 + β1Xi )

= β0

∑
i = 1nci + β1

n∑
i=1

ciXi = β1.

For this to hold for arbitrary normal error linear regression (and hence to
hold for all β0 and β1) we must have

∑n
i=1 ci = 0 and

∑n
i=1 ciXi = 1.

As described above, the variance of β̂1 satisfies:

σ2{β̂1} = σ2

{
n∑

i=1

ciYi

}
=

n∑
i=1

c2
i σ2{Yi} = σ2

n∑
i=1

c2
i .

Define di so that it satisfies ci = ki + di , where the ki are defined in
Lemma 2.1.A.
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Gauss-Markov Theorem for Normal Error Regression Model

Theorem 1.11 (continued 4)

Proof (continued). The variance of β̂1 then becomes

σ2{β̂1} = σ2
n∑

i=1

c2
i = σ2

n∑
i=1

(ki+di )
2 = σ2

(
n∑

i=1

k2
i +

n∑
i=1

d2
i + 2

n∑
i=1

kidi

)
.

Now
n∑

i=1

kidi =
n∑

i=1

ki (ci − ki ) =
n∑

i=1

ciki −
n∑

i=1

k2
i

=
n∑

i=1

ci

(
Xi − X∑n

i=1(Xi − X )2

)
− 1∑n

i=1(X1 − X )2

by Lemma 2.1.A and (2.7) of Note 2.1.A

=

∑n
i=1 ciXi − X

∑n
i=1 ci∑n

i=1(Xi − X )2
− 1∑n

i=1(Xi − X )2
= 0

since
n∑

i=1

ci = 0 and
n∑

i=1

ciXi = 1, as shown above.
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Gauss-Markov Theorem for Normal Error Regression Model

Theorem 1.11 (continued 5)

Proof (continued). So the variance of β̂1 becomes

σ2{β̂1} = σ2

(
n∑

i=1

k2
i +

n∑
i=1

d2
i

)
.

We have σ2{b1} = σ2
∑n

i=1 k2
i as shown above. Therefore

σ2{β̂1} = σ2{b1}+
∑n

i=1 d2
i . So the variance of β̂1 is minimized with all

di = 0, and hence when ci = ki for all i = 1, 2, . . . , n. That is, the
variance of β̂1 is minimized when β̂1 = b1, as claimed.

In Exercise 2.51 it is to be shown that b0 is an unbiased estimator of β0

(as claimed): E{b0} = β0.
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