Applied Linear Statistical Models, Part 1

Section 2.1. Inferences Concerning β_1 —Proofs of Theorems

Lemma 2.1.A

Lemma 2.1.A. Statistic b_1 is a linear combination of the observations Y_i :

$$
b_1 = \sum_{i=1}^n k_i Y_i
$$
 where $k_i = \frac{X_i - \overline{X}}{\sum_{i=1}^n (X_i - \overline{X})^2}$.

Proof. First, we have

$$
\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^n (X_i - \overline{X})Y_i - \sum_{i=1}^n (X_i - \overline{X})\overline{Y}.
$$

But

Lemma 2.1.A

Lemma 2.1.A. Statistic b_1 is a linear combination of the observations Y_i :

$$
b_1 = \sum_{i=1}^n k_i Y_i
$$
 where $k_i = \frac{X_i - \overline{X}}{\sum_{i=1}^n (X_i - \overline{X})^2}$.

Proof. First, we have

$$
\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^n (X_i - \overline{X})Y_i - \sum_{i=1}^n (X_i - \overline{X})\overline{Y}.
$$

But

$$
\sum_{i=1}^{n} (X_i - \overline{X}) \overline{Y} = \overline{Y} \sum_{i=1}^{n} (X_i - \overline{X}) = \overline{Y} \sum_{i=1}^{n} \left(X_i - \sum_{i=1}^{n} X_i / n \right)
$$

$$
= \overline{Y} \left(\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} X_i \right) = 0.
$$

Lemma 2.1.A (continued)

Proof (continued). So

$$
\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^n (X_i - \overline{X})Y_i - \sum_{i=1}^n (X_i - \overline{X})\overline{Y} = \sum_{i=1}^n (X_i - \overline{X})Y_i.
$$

Then we have

$$
b_1=\frac{\sum_{i=1}^n(X_i-\overline{X})(Y_i-\overline{Y})}{\sum_{i=1}^n(X_i-\overline{X})^2}=\frac{\sum_{i=1}^n(X_i-\overline{X})Y_i}{\sum_{i=1}^n(X_i-\overline{X})^2}=\sum_{i=1}^n k_iY_i,
$$

where $k_i = \frac{X_i - X_i}{\sum_{i=1}^{n} X_i}$ $\frac{1}{\sum_{i=1}^n (X_i - \overline{X})^2}$, as claimed.

Theorem 1.11

Theorem 1.11. The Gauss-Markov Theorem for the Normal Error Regression Model.

Consider the data points (X_i, Y_i) for $i = 1, 2, \ldots, n$ and the normal error linear regression model $Y_i = \beta_0 + \beta_1 X_1 + \varepsilon_i$ given in (1.1) with the added hypothesis that each error term has a $\mathcal{N}(0,\sigma^2)$ distribution. The least squares estimators

$$
b_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}
$$
 and $b_0 = \frac{1}{n} \left(\sum_{i=1}^n Y_i - b_1 \sum_{i=1}^n X_i \right) = \overline{Y} - b_1 \overline{X}$

are unbiased (that is, $E\{b_0\} = \beta_0$ and $E\{b_1\} = \beta_1$) and have minimum variance among all unbiased linear estimators (i.e., linear combinations of the Y_i).

Proof. First we have by Lemma 2.1.A and the linearity of expectation (see my online notes for Mathematical Statistics 1 [STAT 4047/5047] on [Section 1.8. Expectation of a Random Variables;](https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-8.pdf) notice Theorem 1.8.2) we have:

Theorem 1.11

Theorem 1.11. The Gauss-Markov Theorem for the Normal Error Regression Model.

Consider the data points (X_i, Y_i) for $i = 1, 2, \ldots, n$ and the normal error linear regression model $Y_i = \beta_0 + \beta_1 X_1 + \varepsilon_i$ given in (1.1) with the added hypothesis that each error term has a $\mathcal{N}(0,\sigma^2)$ distribution. The least squares estimators

$$
b_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}
$$
 and $b_0 = \frac{1}{n} \left(\sum_{i=1}^n Y_i - b_1 \sum_{i=1}^n X_i \right) = \overline{Y} - b_1 \overline{X}$

are unbiased (that is, $E\{b_0\} = \beta_0$ and $E\{b_1\} = \beta_1$) and have minimum variance among all unbiased linear estimators (i.e., linear combinations of the Y_i).

Proof. First we have by Lemma 2.1.A and the linearity of expectation (see my online notes for Mathematical Statistics 1 [STAT 4047/5047] on [Section 1.8. Expectation of a Random Variables;](https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-8.pdf) notice Theorem 1.8.2) we have: . . .

Theorem 1.11 (continued 1)

Proof (continued). ...

$$
E\{b_1\} = E\left\{\sum_{i=1}^n k_i Y_i\right\} = \sum_{i=1}^n k_i E\{Y_i\}
$$

$$
= \sum_{i=1}^n k_i (\beta_0 + \beta_1 X_i) = \beta_0 \sum_{i=1}^n k_i + \beta_1 \sum_{i=1}^n k_i X_i = \beta_1,
$$
because
$$
\sum_{i=1}^n k_i = 0
$$
 by (2.5) and
$$
\sum_{i=1}^n k_i X_i = 1
$$
 by Exercise 2.50, as claim

 $i=1$ $i=1$ $k_iX_i = 1$ by Exercise 2.50, as claimed.

Recall that for independent Y_i , we have σ 2

$$
^{2}\left(\sum_{i=1}^{n}a_{i}Y_{i}\right) =\sum_{i=1}^{n}a_{1}^{2}\sigma^{2}(Y_{i});
$$

 $\setminus i=1$, ien is a see equation A.31 in Appendix A or my online notes on Mathematical Statistics 1 on [Section 1.8. Expectation of a Random Variables](https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-8.pdf) (see Theorem 1.8.2) and on [Section 1.9. Some Special Expectations](https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf) (see Theorem 1.9.1). We use this to find $\sigma\{b_1\}$.

Theorem 1.11 (continued 1)

Proof (continued). ...

$$
E\{b_1\} = E\left\{\sum_{i=1}^n k_i Y_i\right\} = \sum_{i=1}^n k_i E\{Y_i\}
$$

=
$$
\sum_{i=1}^n k_i (\beta_0 + \beta_1 X_i) = \beta_0 \sum_{i=1}^n k_i + \beta_1 \sum_{i=1}^n k_i X_i = \beta_1,
$$

because $\sum_{n=1}^n$ $i=1$ $k_i = 0$ by (2.5) and $\sum_{n=1}^{n}$ $i=1$ $k_iX_i = 1$ by Exercise 2.50, as claimed.

Recall that for independent Y_i , we have $\sigma^2\left(\sum_{}^n\right)$ $i=1$ a_iY_i \setminus $=$ $\sum_{n=1}^{n}$ $i=1$ $a_1^2\sigma^2(Y_i);$

see equation A.31 in Appendix A or my online notes on Mathematical Statistics 1 on [Section 1.8. Expectation of a Random Variables](https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-8.pdf) (see Theorem 1.8.2) and on [Section 1.9. Some Special Expectations](https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf) (see Theorem 1.9.1). We use this to find $\sigma \{b_1\}$.

Theorem 1.11 (continued 2)

Proof (continued). We now have by Lemma 2.1.A and (2.7) of Note 2.1.A that

$$
\sigma^{2}\{b_{1}\} = \sigma^{2}\left\{\sum_{i=1}^{n}k_{i}Y_{i}\right\} = \sum_{i=1}^{n}k_{i}^{2}\sigma^{2}\{Y_{i}\}\
$$

$$
=\sum_{i=1}^n k_i^2\sigma^2=\sigma^2\frac{1}{\sum_{i=1}^n(X_i-\overline{X})^2}.
$$

Next, we need to show that among all unbiased linear estimators of β_1 of the form $\hat{\beta}_1 = \sum_{i=1}^n c_i Y_i$, the one of minimum variance is the one for which $c_i = k_i$ for $i = 1, 2, ..., n$. Since $\hat{\beta}_1$ must be unbiased, then

$$
E{\hat{\beta}_1} = E\left\{\sum_{i=1}^n c_i Y_i\right\} = \sum_{i=1}^n c_i E{Y_i} = \beta_1.
$$

Theorem 1.11 (continued 3)

Proof (continued). We know $E\{Y_i\} = \beta_0 + \beta_1 X_i$ by Note 1.3.A, so we now have

$$
E{\hat{\beta}_1} = \sum_{i=1}^n c_i E{Y_i} = \sum_{i=1}^n c_i (\beta_0 + \beta_1 X_i)
$$

= $\beta_0 \sum_{i=1}^n c_i + \beta_1 \sum_{i=1}^n c_i X_i = \beta_1.$

For this to hold for arbitrary normal error linear regression (and hence to hold for all β_0 and $\beta_1)$ we must have $\sum_{i=1}^n c_i = 0$ and $\sum_{i=1}^n c_i X_i = 1$.

As described above, the variance of $\hat{\beta}_1$ satisfies:

$$
\sigma^2\{\hat{\beta}_1\} = \sigma^2\left\{\sum_{i=1}^n c_i Y_i\right\} = \sum_{i=1}^n c_i^2 \sigma^2\{Y_i\} = \sigma^2 \sum_{i=1}^n c_i^2.
$$

Define d_i so that it satisfies $c_i = k_i + d_i$, where the k_i are defined in Lemma 2.1.A.

Theorem 1.11 (continued 3)

Proof (continued). We know $E\{Y_i\} = \beta_0 + \beta_1 X_i$ by Note 1.3.A, so we now have

$$
E{\hat{\beta}_1} = \sum_{i=1}^n c_i E{Y_i} = \sum_{i=1}^n c_i (\beta_0 + \beta_1 X_i)
$$

= $\beta_0 \sum_{i=1}^n c_i + \beta_1 \sum_{i=1}^n c_i X_i = \beta_1.$

For this to hold for arbitrary normal error linear regression (and hence to hold for all β_0 and $\beta_1)$ we must have $\sum_{i=1}^n c_i = 0$ and $\sum_{i=1}^n c_i X_i = 1$.

As described above, the variance of $\hat{\beta}_1$ satisfies:

$$
\sigma^{2}\{\hat{\beta}_{1}\} = \sigma^{2}\left\{\sum_{i=1}^{n} c_{i} Y_{i}\right\} = \sum_{i=1}^{n} c_{i}^{2} \sigma^{2} \{Y_{i}\} = \sigma^{2} \sum_{i=1}^{n} c_{i}^{2}.
$$

Define d_i so that it satisfies $c_i = k_i + d_i$, where the k_i are defined in Lemma 2.1.A.

Theorem 1.11 (continued 4)

Proof (continued). The variance of $\hat{\beta}_1$ then becomes

$$
\sigma^2\{\hat{\beta}_1\}=\sigma^2\sum_{i=1}^n c_i^2=\sigma^2\sum_{i=1}^n (k_i+d_i)^2=\sigma^2\left(\sum_{i=1}^n k_i^2+\sum_{i=1}^n d_i^2+2\sum_{i=1}^n k_i d_i\right).
$$

Now
$$
\sum_{i=1}^{n} k_i d_i = \sum_{i=1}^{n} k_i (c_i - k_i) = \sum_{i=1}^{n} c_i k_i - \sum_{i=1}^{n} k_i^2
$$

\n
$$
= \sum_{i=1}^{n} c_i \left(\frac{X_i - \overline{X}}{\sum_{i=1}^{n} (X_i - \overline{X})^2} \right) - \frac{1}{\sum_{i=1}^{n} (X_1 - \overline{X})^2}
$$

\nby Lemma 2.1.A and (2.7) of Note 2.1.A
\n
$$
= \frac{\sum_{i=1}^{n} c_i X_i - \overline{X} \sum_{i=1}^{n} c_i}{\sum_{i=1}^{n} (X_i - \overline{X})^2} - \frac{1}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = 0
$$

\nsince $\sum_{i=1}^{n} c_i = 0$ and $\sum_{i=1}^{n} c_i X_i = 1$, as shown above.

Theorem 1.11 (continued 5)

Proof (continued). So the variance of $\hat{\beta}_1$ becomes

$$
\sigma^{2}\{\hat{\beta}_{1}\} = \sigma^{2}\left(\sum_{i=1}^{n}k_{i}^{2} + \sum_{i=1}^{n}d_{i}^{2}\right).
$$

We have $\sigma^2\{b_1\} = \sigma^2 \sum_{i=1}^n k_i^2$ as shown above. Therefore $\sigma^2\{\hat\beta_1\}=\sigma^2\{b_1\}+\sum_{i=1}^n d_i^2.$ So the variance of $\hat\beta_1$ is minimized with all $d_i = 0$, and hence when $c_i = k_i$ for all $i = 1, 2, \ldots, n$. That is, the variance of $\hat{\beta}_1$ is minimized when $\hat{\beta}_1 = b_1$, as claimed.

In Exercise 2.51 it is to be shown that b_0 is an unbiased estimator of β_0 (as claimed): $E\{b_0\} = \beta_0$.

Theorem 1.11 (continued 5)

Proof (continued). So the variance of $\hat{\beta}_1$ becomes

$$
\sigma^{2}\{\hat{\beta}_{1}\} = \sigma^{2}\left(\sum_{i=1}^{n}k_{i}^{2} + \sum_{i=1}^{n}d_{i}^{2}\right).
$$

We have $\sigma^2\{b_1\} = \sigma^2 \sum_{i=1}^n k_i^2$ as shown above. Therefore $\sigma^2\{\hat\beta_1\}=\sigma^2\{b_1\}+\sum_{i=1}^n d_i^2.$ So the variance of $\hat\beta_1$ is minimized with all $d_i = 0$, and hence when $c_i = k_i$ for all $i = 1, 2, \ldots, n$. That is, the variance of $\hat{\beta}_1$ is minimized when $\hat{\beta}_1 = b_1$, as claimed.

In Exercise 2.51 it is to be shown that b_0 is an unbiased estimator of β_0 (as claimed): $E\{b_0\} = \beta_0$.