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Section 1.6. Estimation of Regression Function

Note. In this section we start our computation exploration of linear models. We

use the “least squares” approach to derive estimations of the optimal values of β0

and β1 in the simple linear regression model.

Note. As an introductory example, consider a small-scale experiment in which

n = 3 subjects are asked to perform a difficult task. The subjects attempt the

task until they succeed. We take as the predictor variable (or the “explanatory

variable”) as age and represent it by Xi. We take the response variable as the

number of attempts and represent it by Yi. In general, we associate with trial i the

ordered pair (Xi, Yi). Consider the data:

Subject i: 1 2 3

Age Xi: 20 55 30

Number of attempts Yi: 5 12 10

Here, we have n = 3 and the data points (X1, Y1) = (20, 5), (X2, Y2) = (55, 12),

and (X3, Y3) = (30, 10).

Note 1.6.A. We employ the least squares method to find “good” estimators of

the regression parameters β0 and β1. This is also addressed in my online notes

for Calculus 3 (MATH 2110) on Section 14.7. Extreme Values and Saddle Points

(see Page 828 Number 65). The simple linear regression model predicts a value

of β0 + β1Xi for the response variable when the predictor variable is Xi, whereas

the observed value of the response variable is Yi. So the deviation of the predicted

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s7.pdf
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value from the observed value is Yi − (β0 + β1Xi) = Yi − β0 − β1Xi. We square this

deviation for each i and then sum the squares of the deviation to produce quantity

Q. That is, we want to find values of β0 and β1 that will minimize Q, where

Q =
n∑

i=1

(Yi − β0 − β1Xi)
2.

We will denote the values of β0 and β1 which minimize Q as b0 and b1, respectively.

Note. Figure 1.9 gives two plots of the data from the table above. Two lines are

plotted, the line Ŷ = 9.0+0(X) in Figure 1.9(a), and Ŷ = 2.81+0.177X in Figure

1.9(b). Since we have the raw data and the lines, then we can calculate the value

of the sum of the squares of the deviations (i.e., the value of Q) in both cases. For

the line Ŷ = 9.0 + 0(X) we have Q = 26.0, and for the line Ŷ = 2.81 + 0.177X

we have Q = 5.7. So the second line is a better fit in terms of making Q small. In

fact, the second lint is the least squares regression line.
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Theorem 1.6.A. For data points (Xi, Yi) where i = 1, 2, . . . , n, the values of β0

and β1 which minimize

Q =
n∑

i=1

(Yi − β0 − β1Xi)
2

are

b1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
and b0 =

1

n

(
n∑

i=1

Yi − b1

n∑
i=1

Xi

)
= Y − b1X,

respectively.

Note. The next theorem will be proved in the next chapter in the special case when

the error terms are normally distributed (see Section 2.1. Inferences Concerning β1).

Theorem 1.11. The Gauss-Markov Theorem.

Consider the data points (Xi, Yi) for i = 1, 2, . . . , n and the simple linear regression

model Yi = β0 +β1X1 + εi given in (1.1) (see Section 1.3. Simple Linear Regression

Model with Distribution of Error Terms Unspecified for the detailed assumptions

of the model). The least squares estimators

b1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
and b0 =

1

n

(
n∑

i=1

Yi − b1

n∑
i=1

Xi

)
= Y − b1X

are unbiased (that is, E{b0} = β0 and E{b1} = β1) and have minimum variance

among all unbiased linear estimators (i.e., linear combinations of the Yi).

https://faculty.etsu.edu/gardnerr/5710/notes-Linear-Models1/Linear-Models1-2-1.pdf
https://faculty.etsu.edu/gardnerr/5710/notes-Linear-Models1/Linear-Models1-1-3.pdf
https://faculty.etsu.edu/gardnerr/5710/notes-Linear-Models1/Linear-Models1-1-3.pdf
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Note/Definition. The equation y = b1x + b0 is the regression equation or re-

gression line. To simplify by-hand computations, we will establish in Section 2.1.

Inferences Concerning β1 the relationship

b1 =

∑
(Xi −X)Yi∑
(Xi −X)2

=
∑

kiYi where ki =
Xi −X∑
(Xi −X)2

.

Example 1.6.A. Kutner et al. give an example based on 25 data points (the

data is available on the CD-ROM that comes with the book). Here, we give an

example from William Navidi’s Statistics for Engineers and Scientists, 3rd Edition,

McGraw-Hill (2011). This is the book used in ETSU’s Foundations of Probability

and Statistics-Calculus (MATH 2050), and I have online notes in preparation for

this class. Navidi’s Exercise 7.2.9 is as follows.

Exercise 7.2.9. The article “Testing the Influence of Climate, Human Impact

and Fire on the Holocene Population Expansion of Fagus sylvatica in the Southern

Prealps (Italy)” (V. Valsecchi, W. Flnsinger, et al., The Holocene 2008: 603–614)

presents calculations of the ages (in calendar years before 1950) of several sediment

samples taken at various depths (in cm) in Lago di Fimon, a lake in Italy. The

results are presented in the following table.

Depth 284.5 407.5 512.0 551.0 578.5 697.0 746.5

Age 1255 3390 5560 6670 7160 9820 11030

First, we use the predictor variable Xi of Depth and the response variable Yi of

Age. Notice that the averages (to two decimal places) are

X =
∑

Xi/n = (284.5+407.5+512.0+551.0+578.5+697.0+746.5)/7 = 539.57

https://faculty.etsu.edu/gardnerr/5710/notes-Linear-Models1/Linear-Models1-2-1.pdf
https://faculty.etsu.edu/gardnerr/5710/notes-Linear-Models1/Linear-Models1-2-1.pdf
https://faculty.etsu.edu/gardnerr/2050/Stats-Calc-Based-notes.htm
https://faculty.etsu.edu/gardnerr/2050/Stats-Calc-Based-notes.htm
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Y =
∑

Yi/n = (1255 + 3390 + 5560 + 6670 + 7160 + 9820 + 11030)/7 = 6412.14

i Xi Yi Xi −X Yi − Y (Xi −X)(Yi − Y ) (Xi −X)2 (Yi − Y )2

1 284.5 1255 −255.1 −5157.1 1315576.2 65076.0 26595680.4

2 407.5 3390 −132.1 −3022.1 399219.4 17450.4 9133088.4

3 512.0 5560 −27.6 −852.1 23518.0 761.8 726074.4

4 551.0 6670 11.4 257.9 2940.1 130.0 66512.4

5 578.5 7160 38.9 747.9 29093.3 1513.2 559354.4

6 697.0 9820 157.4 3407.9 536403.5 24774.8 11613782.4

7 746.5 11030 206.9 4617.9 955443.5 42807.6 21325000.4

sum 3777 44885 −0.2 0.3 3262194 152513.8 70019492.8

The sums of the Xi − X and the Yi − Y should be 0, reflecting round off error.

Therefore, we have the least squares estimators of β1 and β0 (to two decimal places)

as

b1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
=

3262194

152513.8
= 21.39

and

b0 =
1

n

(
n∑

i=1

Yi − b1

n∑
i=1

Xi

)
= Y − b1X = 6412.14− (21.39)(539.57) = −5129.26,

respectively. The regression equation is y = 21.39x − 5129.94. A plot of the data

points and the regression line is given below. This was generated with the online

software Wolfram Alpha.

https://www.wolframalpha.com/
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A plot of the Depth/Age data points and the regression line.

Note. In Note 1.3.A, we have the regression model E{Y } = β0 + β1X. With the

sample estimators b0 and b1, we estimate the regression model as Ŷ = b0 + b1X,

where Ŷ (pronounced “Y hat”) is the estimate of the response variable Y for a

given value of the predictor variable X.

Definition. In the estimate of the regression model, Ŷ = b0 + b1X, a value of the

predictor variable is the level of X, a value of the response variable Y is a response,

and E{Y } is the mean response. That is, the mean response E{Y } is the mean of

the probability distribution of Y corresponding to the level of the predictor variable

X. When Ŷi = b0 + b1Xi (where i = 1, 2, . . . , n), Ŷi is the fitted value for the ith

case (“trial”), whereas Yi is the observed value.
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Example 1.6.B. The estimated regression function of Example 1.6.A is Ŷ =

−5129.26 + 21.39X. When the depth X = 600 cm, the point estimate of the age

Ŷ = −5129.26 + 21.39(600) = 7704.74 years. That is, if several samples are taken

at a depth of 600 cm then the average age of these samples is expected to be 7704.74

years. However, since there are error terms in the model reflecting the variability

in the ages of samples at a given depth.

Note 1.6.B. In Note 1.3.C, we introduced the alternative form of simple linear

regression model as Yi = β∗
0 + β1(Xi −X) + εi where β∗

0 = β0 + β1X. By Theorem

1.6.A, b0 = Y − b1X, so that the least squares estimator of

b∗0 = b0 + b1X = (Y − b1X) + b1X = Y .

The estimated regression model is the

Ŷ = b∗0 + b1(X −X) = Y + b1(X −X).

In Example 1.6.A, we have Y = 6412.14 and X = 539.57 so that the estimated

regression function in the alternative form is: Ŷ = 6412.14 + 21.39(X − 539.57)

(which simplifies to Ŷ = −5129.26 + 21.39X, the original estimated regression

function).

Definition. The ith residual in a set of data is the difference between the observed

value Yi and the corresponding fitted value Ŷi. This residual is denoted by ei, so

that ei = Yi − Ŷi.
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Example 1.6.C. Of course the residual ei indicates how far the data point (Xi, Yi)

is from point (Xi, Ŷi), and hence reflects the vertical distance from a data point

to the estimated regression function. For Example 1.6.A, we have the following

residuals and residuals squared:

i Xi Yi Ŷi ei = Yi − Ŷi e2
1 = (Yi − Ŷi)

2

1 284.5 1255 956.20 298.8 89281.44

2 407.5 3390 3587.17 −197.17 38876.01

3 512.0 5560 5822.42 −262.42 68864.26

4 551.0 6670 6656.63 13.37 178.76

5 578.5 7160 7244.86 −84.86 7201.22

6 697.0 9820 9779.57 40.43 1634.58

7 746.5 11030 10838.38 191.62 36718.22

sum 3777 44885 44885.23 −0.23 242754.49

The sum of of the residuals, −0.23, should be 0, reflecting round off error.

Note. Notice that the model error term εi = Yi −E{Yi} is unknown, whereas the

residual ei = Y1 − Ŷi is known from the data. We’ll use residuals again in Chapter

3, “Diagnostics and Remedial Measure” (notice sections 3.2, 3.3, and 3.4). We now

prove several properties of residuals and the estimated regression function. You

may have noticed some of these properties in Examples 1.6.A and 1.6.C.
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Theorem 1.6.B. For data points (Xi, Yi) where i = 1, 2, . . . , n, estimated re-

gression model Ŷ = b0 + b1X, and residuals ei = Yi − Ŷi, we have the following

properties.

1. The sum of the residuals is zero:
∑n

i=1 ei = 0.

2. The sum of the squared residuals,
∑n

i=1 e2
i , is a minimum.

3. The sum of the observed values Yi equals the sum of the fitted values Ŷi:∑n
i=1 Yi =

∑n
i=1 Ŷi.

4. The sum of the weighted residuals is zero when the residual in the ith trial

is weighted by the level of the predictor variable in the ith trial. That is,∑n
i=1 Xiei = 0.

5. The sum of the weighted residuals is zero when the ith trial is weighted by the

fitted value of the response variable for the ith trial. That is,
∑n

i=1 Ŷiei = 0.

6. The regression line always goes through the point (X, Y ).
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