Applied Multivariate Statistical Analysis

Chapter 2. A Short Excursion into Matrix Algebra

2.6. Geometrical Aspects—Proofs of Theorems

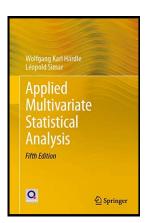


Table of contents

Theorem 2.7

2 Theorem 2.8

Theorem 2.7. Let $A = A(p \times p)$ be a positive definite matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$ and with corresponding orthonormal eigenvectors $\gamma_1, \gamma_2, \ldots, \gamma_p$.

- (i) The *principal axes* of iso-distance curve E_d with center x_0 are in the direction of $\pm \gamma_i$ where i = 1, 2, ..., p.
- (ii) The half-lengths of the axes are $\sqrt{d^2/\lambda_i}$ where $i=1,2,\ldots,p$.
- (iii) The rectangle surrounding the ellipsoid E_d is defined by the inequalities:

$$x_{0i} - \sqrt{d^2 a^{ii}} \le x_i \le x_{0i} + \sqrt{d^2 a^{ii}}$$
 where $i = 1, 2, \dots, p$

where a^{ii} is the (i, i) element of \mathcal{A}^{-1} and x_{0i} is the ith component of x_0 . By the rectangle surrounding the ellipsoid E_d we mean the rectangle whose sides are parallel to the coordinate axes.

Theorem 2.7 (continued 1)

Proof. We take (i) and (ii) as definitions. We assume $x_0=0$ (so that $x_{0i}=0$ for $i=1,2,\ldots,p$) and then the general result holds be translating both E_d and the rectangle surrounding it.

We need to find the coordinates of the tangency points of the ellipsoid and the rectangle surrounding it. With x as such a point (well, vector actually), we need x such that

$$\max_{x^{\top} \mathcal{A} x = d^2} e_j^{\top} x \text{ for all } j = 1, 2, \dots, p$$

where e_j^{\top} is the *j*th column of the identity matrix \mathcal{I}_p (i.e., the *j*th standard basis vector for \mathbb{R}^p).

Theorem 2.7 (continued 1)

Proof. We take (i) and (ii) as definitions. We assume $x_0=0$ (so that $x_{0i}=0$ for $i=1,2,\ldots,p$) and then the general result holds be translating both E_d and the rectangle surrounding it.

We need to find the coordinates of the tangency points of the ellipsoid and the rectangle surrounding it. With x as such a point (well, vector actually), we need x such that

$$\max_{x^{\top} \mathcal{A} x = d^2} e_j^{\top} x$$
 for all $j = 1, 2, \dots, p$

where e_j^{\top} is the jth column of the identity matrix \mathcal{I}_p (i.e., the jth standard basis vector for \mathbb{R}^p). Since x is on E_d (and the center of E_d is 0), then $\|x\|_{\mathcal{A}} = \sqrt{x^{\top}\mathcal{A}x} = \sqrt{d^2} = d$ or $x^{\top}\mathcal{A}x = d^2$. Now $e_j^{\top}x$ is $\|e_j\|\|x\| = \|x\|$ times the cosine of the angle θ between e_j and x (as seen in Linear Algebra; see Section 1.2. The Norm and Dot Product). Now the maximum occurs when $\theta = 0$ and x and e_j are parallel (and the minimum occurs when $\theta = \pi$ and x and x and x and x are anti-parallel; this corresponds to the other "side" of the rectangle surrounding x [Hmm...]

Theorem 2.7 (continued 1)

Proof. We take (i) and (ii) as definitions. We assume $x_0=0$ (so that $x_{0i}=0$ for $i=1,2,\ldots,p$) and then the general result holds be translating both E_d and the rectangle surrounding it.

We need to find the coordinates of the tangency points of the ellipsoid and the rectangle surrounding it. With x as such a point (well, vector actually), we need x such that

$$\max_{x^{ op}\mathcal{A}x=d^2} e_j^{ op} x$$
 for all $j=1,2,\ldots,p$

where e_j^{\top} is the jth column of the identity matrix \mathcal{I}_p (i.e., the jth standard basis vector for \mathbb{R}^p). Since x is on E_d (and the center of E_d is 0), then $\|x\|_{\mathcal{A}} = \sqrt{x^{\top}\mathcal{A}x} = \sqrt{d^2} = d$ or $x^{\top}\mathcal{A}x = d^2$. Now $e_j^{\top}x$ is $\|e_j\|\|x\| = \|x\|$ times the cosine of the angle θ between e_j and x (as seen in Linear Algebra; see Section 1.2. The Norm and Dot Product). Now the maximum occurs when $\theta = 0$ and x and e_j are parallel (and the minimum occurs when $\theta = \pi$ and x and x and x and x are anti-parallel; this corresponds to the other "side" of the rectangle surrounding x [Hmm...]

Theorem 2.7 (continued 2)

Proof (continued). That is, we want to maximize (and minimize) $e_j^\top x$ subject to $x^\top \mathcal{A} x = d^2$. We define the scalar valued functions of vector x of $f(x) = e_j^\top x$ and $g(x) = x^\top \mathcal{A} x - d^2$. Recall that the Method of Lagrange Multipliers allows us to find the extrema of f subject to the constraint g(x) = 0 by finding vector x and scalar x such that $\frac{\partial f(x)}{\partial x} = \lambda \frac{\partial g(x)}{\partial x}$ and g(x) = 0; see my online notes for Calculus 3 (MATH 2110) on Section 14.8. Lagrange Multipliers where this is considered for $x \in \mathbb{R}^3$.

Now

$$\frac{\partial f(x)}{\partial x} = \frac{\partial (e_j^\top x)}{\partial x} = e_j \text{ and } \frac{\partial g(x)}{\partial x} = \frac{\partial (x^\top Ax - d^2)}{\partial x} = 2Ax,$$

where the second equality holds by Exercise 2.5 (which is worked as an example in Section 2.4. Derivatives).

5 / 8

Theorem 2.7 (continued 2)

Proof (continued). That is, we want to maximize (and minimize) $e_i^{\top}x$ subject to $x^{\top}Ax = d^2$. We define the scalar valued functions of vector xof $f(x) = e_i^{\top} x$ and $g(x) = x^{\top} A x - d^2$. Recall that the Method of Lagrange Multipliers allows us to find the extrema of f subject to the constraint g(x) = 0 by finding vector x and scalar λ such that $\frac{\partial f(x)}{\partial x} = \lambda \frac{\partial g(x)}{\partial x} \text{ and } g(x) = 0; \text{ see my online notes for Calculus 3}$ (MATH 2110) on Section 14.8. Lagrange Multipliers where this is considered for $x \in \mathbb{R}^3$.

Now

$$\frac{\partial f(x)}{\partial x} = \frac{\partial (e_j^\top x)}{\partial x} = e_j \text{ and } \frac{\partial g(x)}{\partial x} = \frac{\partial (x^\top \mathcal{A} x - d^2)}{\partial x} = 2\mathcal{A} x,$$

where the second equality holds by Exercise 2.5 (which is worked as an example in Section 2.4. Derivatives).

5 / 8

Theorem 2.7 (continued 3)

Proof (continued). So we need to solve the system

$$\frac{\partial f(x)}{\partial x} = \lambda \frac{\partial g(x)}{\partial x} \text{ or } e_j = 2\lambda Ax$$
 (2.36)

$$g(x) = 0 \text{ or } x^{\top} A x - d^2 = 0$$
 (2.37)

From (2.36) we have $x = \frac{1}{2\lambda} A^{-1} e_j$ or, with $A^{-1} = (a^{ij})$ we have componentwise that $x_i = \frac{1}{2\lambda} a^{ij}$ for i = 1, 2, ..., p. Multiplying both sides of (2.36) on the left by x^{\top} gives

$$x^{\top}(e_j - 2\lambda Ax) = 0$$
 or $x_j = 2\lambda x^{\top} Ax$ or $x_j = 2\lambda d^2$ for $j = 1, 2, ..., p$

where the last equality holds by (2.37). Hence $x_j = \frac{1}{2\lambda} a^{jj} = 2\lambda d^2$ or $4\lambda^2 = a^{jj}/d^2$ or $2\lambda = \pm \sqrt{a^{jj}/d^2}$

Theorem 2.7 (continued 3)

Proof (continued). So we need to solve the system

$$\frac{\partial f(x)}{\partial x} = \lambda \frac{\partial g(x)}{\partial x} \text{ or } e_j = 2\lambda Ax$$
 (2.36)

$$g(x) = 0 \text{ or } x^{\top} A x - d^2 = 0$$
 (2.37)

From (2.36) we have $x=\frac{1}{2\lambda}\mathcal{A}^{-1}e_j$ or, with $\mathcal{A}^{-1}=(a^{ij})$ we have componentwise that $x_i=\frac{1}{2\lambda}a^{ij}$ for $i=1,2,\ldots,p$. Multiplying both sides of (2.36) on the left by x^{\top} gives

$$x^{\top}(e_j - 2\lambda \mathcal{A}x) = 0$$
 or $x_j = 2\lambda x^{\top} \mathcal{A}x$ or $x_j = 2\lambda d^2$ for $j = 1, 2, \dots, p$

where the last equality holds by (2.37). Hence $x_j = \frac{1}{2^{3}}a^{jj} = 2\lambda d^2$ or $4\lambda^2 = a^{ij}/d^2$ or $2\lambda = \pm \sqrt{a^{ij}/d^2}$.

Theorem 2.7 (continued 4)

Proof (continued). For the maximum of $e_j^\top x$, we choose $2\lambda = \sqrt{a^{jj}/d^2}$ and for the minimum of $e_j^\top x$ we choose $2\lambda = -\sqrt{a^{jj}/d^2}$. Since componentwise, $x_i = \frac{1}{2\lambda} a^{jj}$ as shown above, then with i = j we have the maximum of $e_j^\top x$ satisfies

$$x_j=rac{1}{\sqrt{a^{jj}/d^2}}a^{jj}=\sqrt{rac{d^2}{a^{jj}}}a^{jj}=\sqrt{d^2a^{jj}} ext{ for } j=1,2,\ldots,p.$$

Similarly, the the minimum of $e_j^{\top}x$ satisfies $x_j = -\sqrt{d^2a^{jj}}$ for j = 1, 2, ..., p. So (iii) holds when x = 0 and so holds in general by translation, as described above.

7 / 8

Theorem 2.8. Let $\mathcal{X} = \mathcal{X}(n \times p)$, $\mathcal{P} = \mathcal{X}(\mathcal{X}^{\top}\mathcal{X})^{-1}\mathcal{X}^{\top}$, and $\mathcal{Q} = \mathcal{I}_n - \mathcal{P}$. Then

- (i) $\{x = \mathcal{P}b \mid b \in \mathbb{R}^n\} \subseteq C(\mathcal{X})$,
- (ii) if y = Qb then $y^{\top}x = 0$ for all $x \in C(\mathcal{X})$.

Proof. (i) For $x = \mathcal{P}b$ where $b \in \mathbb{R}^n$, we have $x = \mathcal{X}(\mathcal{X}^\top \mathcal{X})^{-1} \mathcal{X}^\top b$. Define $a = (\mathcal{X}^\top \mathcal{X})^{-1} \mathcal{X}^\top b \in \mathbb{R}^p$ and then $\mathcal{X}a = \mathcal{X}(\mathcal{X}^\top \mathcal{X})^{-1} \mathcal{X}^\top b = x$; so x is in the column space $C(\mathcal{X})$. Since x is an arbitrary element of $\{x = \mathcal{P}b \mid b \in \mathbb{R}^n\}$, then (i) follows.

Theorem 2.8. Let $\mathcal{X} = \mathcal{X}(n \times p)$, $\mathcal{P} = \mathcal{X}(\mathcal{X}^{\top}\mathcal{X})^{-1}\mathcal{X}^{\top}$, and $\mathcal{Q} = \mathcal{I}_n - \mathcal{P}$. Then

- (i) $\{x = \mathcal{P}b \mid b \in \mathbb{R}^n\} \subseteq C(\mathcal{X}),$
- (ii) if y = Qb then $y^{\top}x = 0$ for all $x \in C(\mathcal{X})$.

Proof. (i) For $x = \mathcal{P}b$ where $b \in \mathbb{R}^n$, we have $x = \mathcal{X}(\mathcal{X}^\top \mathcal{X})^{-1} \mathcal{X}^\top b$. Define $a = (\mathcal{X}^\top \mathcal{X})^{-1} \mathcal{X}^\top b \in \mathbb{R}^p$ and then $\mathcal{X}a = \mathcal{X}(\mathcal{X}^\top \mathcal{X})^{-1} \mathcal{X}^\top b = x$; so x is in the column space $C(\mathcal{X})$. Since x is an arbitrary element of $\{x = \mathcal{P}b \mid b \in \mathbb{R}^n\}$, then (i) follows.

(ii) Since $Q = \mathcal{I}_n - \mathcal{P}$, then $y = Qb = (\mathcal{I}_n - \mathcal{P})b = b - \mathcal{P}b$. Since $x \in C(\mathcal{X})$ then $x = \mathcal{X}a$ for some $a \in \mathbb{R}^p$. Then

$$y^{\top} x = (b - \mathcal{P}b)^{\top} \mathcal{X} a = (b^{\top} - b^{\top} \mathcal{P}^{\top}) \mathcal{X} a = b^{\top} \mathcal{X} a - b^{\top} \mathcal{P} \mathcal{X} a$$
$$= b^{\top} \mathcal{X} a - b^{\top} \mathcal{X} (\mathcal{X}^{\top} \mathcal{X})^{-1} \mathcal{X}^{\top} \mathcal{X} a = b^{\top} \mathcal{X} a - b^{\top} \mathcal{X} (\mathcal{I}_n) a = 0,$$

as claimed.

Theorem 2.8. Let
$$\mathcal{X} = \mathcal{X}(n \times p)$$
, $\mathcal{P} = \mathcal{X}(\mathcal{X}^{\top}\mathcal{X})^{-1}\mathcal{X}^{\top}$, and $\mathcal{Q} = \mathcal{I}_n - \mathcal{P}$. Then

- (i) $\{x = \mathcal{P}b \mid b \in \mathbb{R}^n\} \subset C(\mathcal{X}),$
- (ii) if y = Qb then $y^{\top}x = 0$ for all $x \in C(\mathcal{X})$.

Proof. (i) For $x = \mathcal{P}b$ where $b \in \mathbb{R}^n$, we have $x = \mathcal{X}(\mathcal{X}^\top \mathcal{X})^{-1} \mathcal{X}^\top b$. Define $a = (\mathcal{X}^{\top}\mathcal{X})^{-1}\mathcal{X}^{\top}b \in \mathbb{R}^{p}$ and then $\mathcal{X}a = \mathcal{X}(\mathcal{X}^{\top}\mathcal{X})^{-1}\mathcal{X}^{\top}b = x$; so x is in the column space $C(\mathcal{X})$. Since x is an arbitrary element of $\{x = \mathcal{P}b \mid b \in \mathbb{R}^n\}$, then (i) follows.

(ii) Since $Q = \mathcal{I}_n - \mathcal{P}$, then $y = Qb = (\mathcal{I}_n - \mathcal{P})b = b - \mathcal{P}b$. Since $x \in C(\mathcal{X})$ then $x = \mathcal{X}a$ for some $a \in \mathbb{R}^p$. Then

$$y^{\top} x = (b - \mathcal{P}b)^{\top} \mathcal{X} a = (b^{\top} - b^{\top} \mathcal{P}^{\top}) \mathcal{X} a = b^{\top} \mathcal{X} a - b^{\top} \mathcal{P} \mathcal{X} a$$
$$= b^{\top} \mathcal{X} a - b^{\top} \mathcal{X} (\mathcal{X}^{\top} \mathcal{X})^{-1} \mathcal{X}^{\top} \mathcal{X} a = b^{\top} \mathcal{X} a - b^{\top} \mathcal{X} (\mathcal{I}_n) a = 0,$$

as claimed.

