
Section 6.2. Minimal Spanning Tree Algorithm 1

Section 6.2. Minimal Spanning Tree Algorithm.

Note. In this section, we consider a graph (i.e., a network with undirected arcs

in Taha’s terminology) which is connected and has a weight on each edge. We

describe an algorithm that finds a spanning tree of minimal total edge weight.

We say “minimal” because there may be other spanning trees of the same total

eight, but there is no other spanning tree of smaller total weight. We follow Taha’s

presentation, but also give a clear statement of the algorithm and give references

that justify the claims of minimality.

Note. Let N = {1, 2, . . . , n} be the set of nodes of the network. Define Ck denote

the set of nodes that have been permanently connect at iteration k of the algorithm,

and let Ck denote the set of nodes not yet connected permanently immediately after

iteration k of the algorithm. The minimal spanning tree algorithm then has the

steps:

Step 1. Set C0 = ∅ and C0 = N .

Step 2. Start with any node i in the unconnected set C0 and set C1 = {i}, and

set Ci = N \ {i}. Set k = 2.

General Step k. Select a node j∗ in the unconnected set Ck−1 that yields the

least weight on a edge (or an “arc”) to a node in the connected set Ck−1.

Link j∗ permanently to Ck−1 and remove it from Ck−1 to obtain Ck and Ck,

respectively. Stop if Ck is empty, otherwise replace k with k + 1 and repeat

this step.



Section 6.2. Minimal Spanning Tree Algorithm 2

Example 6.2.1. Midwest TV Cable Company needs to connect cable to five

houses. Figure 6.5 shows the distances between the five houses along the routes of

possible connections. The goal is to determine the most economical cable network.

Solution. We start with C1 = {1} and C1 = {2, 3, 4, 5, 6}. The algorithm is

illustrated in Figure 6.6. We select node j∗ = 2 since it is the node in C1 =

{2, 3, 4, 5, 6} of minimum distance from a node in C1 = {1}; then 1 is linked to 2,

C2 = {1, 2} and C2 = {3, 4, 5, 6} (k = 1). Next, node j∗ = 5 since it is the node in

C2 = {3, 4, 5, 6} of minimum distance from a node in C2 = {1, 2}; then 2 is linked

to 5, C3 = {1, 2, 5} and C3 = {3, 4, 6} (k = 2). Node j∗ = 4 since it is the node in

C3 = {3, 4, 6} of minimum distance from a node in C3 = {1, 2, 5}; then 2 is linked

to 4, C4 = {1, 2, 4, 5} and C4 = {3, 6} (k = 3).

Figure 6.6

Node j∗ = 6 since it is the node in C4 = {3, 6} of minimum distance from a node



Section 6.2. Minimal Spanning Tree Algorithm 3

in C4 = {1, 2, 4, 5}; then 4 is linked to 6, C5 = {1, 2, 4, 5} and C5 = {3} (k = 4).

Finally, we take j∗ = 3 because it is the only element of C5 = {3}; then we link

3 to either 1 or 4 (since both of these yield the minimum distance (k = 5). Then

C6 = ∅ and the algorithm ends. This results in a minimal of minimal total length

1 + 3 + 4 + 3 + 5 = 16. We see by this example (in step k = 5), that the minimal

tree is not unique.

Note. The algorithm described is called Kruskal’s algorithm or the Bor
◦
uvka-

Kruskal Algorithm. It was first used by Czech scientist Otakar Bor
◦
uvka in 1926 to

find an electrical network in Moravia, Czech Republic. Otakar Bor
◦
uvka published

his result in Czech. Independently, Joseph B. Kruskal, Jr. found the same algorithm

and published his result in “On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem,” Proceedings of the American Mathematical Society

7, 48–50 (1956). A copy of Kruskal’s paper is online on the American Mathematical

Society webpage (accessed 5/3/2022). The algorithm is described in Introduction

to Graph Theory (MATH 4347/5347) in Section 7.1. Spanning Tree Algorithms.

It is described in detail in Mathematical Modeling Using Graph Theory (MATH

5870) in Section 8.5. Greedy Heuristics, where a proof that it yields a minimal

weight spanning tree is to be given in Exercise 8.5.3 (see also Theorem 8.23). The

algorithm is state as:

Input: a weighted connected graph G = G(G, w)

Output: an optimal tree T = (V, F ) of G, and its weight w(F )

1: set F = ∅, w(F ) = 0 (F denotes the edge set of the current forest)

2: while there is an edge e ∈ E \ F such that F ∪ {e} is the edge set

https://www.ams.org/journals/proc/1956-007-01/S0002-9939-1956-0078686-7/S0002-9939-1956-0078686-7.pdf
https://www.ams.org/journals/proc/1956-007-01/S0002-9939-1956-0078686-7/S0002-9939-1956-0078686-7.pdf
https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-7-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-8-5.pdf


Section 6.2. Minimal Spanning Tree Algorithm 4

of a forest do

3: choose such an edge e of minimum weight

4: replace F by F ∪ {e} and e(F ) by w(F ) + w(e)

5: end while

6: return (V, F ), w(F ))

Notice that this is the same as the algorithm given by Taha. The do/while loop

given here is the same as the “General Step k” given above.

Revised: 5/30/2022


